cogito/esphome_dev/esphome/components/qmc5883l/qmc5883l.cpp

175 lines
6.1 KiB
C++

#include "qmc5883l.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include <cmath>
namespace esphome {
namespace qmc5883l {
static const char *const TAG = "qmc5883l";
static const uint8_t QMC5883L_ADDRESS = 0x0D;
static const uint8_t QMC5883L_REGISTER_DATA_X_LSB = 0x00;
static const uint8_t QMC5883L_REGISTER_DATA_X_MSB = 0x01;
static const uint8_t QMC5883L_REGISTER_DATA_Y_LSB = 0x02;
static const uint8_t QMC5883L_REGISTER_DATA_Y_MSB = 0x03;
static const uint8_t QMC5883L_REGISTER_DATA_Z_LSB = 0x04;
static const uint8_t QMC5883L_REGISTER_DATA_Z_MSB = 0x05;
static const uint8_t QMC5883L_REGISTER_STATUS = 0x06;
static const uint8_t QMC5883L_REGISTER_TEMPERATURE_LSB = 0x07;
static const uint8_t QMC5883L_REGISTER_TEMPERATURE_MSB = 0x08;
static const uint8_t QMC5883L_REGISTER_CONTROL_1 = 0x09;
static const uint8_t QMC5883L_REGISTER_CONTROL_2 = 0x0A;
static const uint8_t QMC5883L_REGISTER_PERIOD = 0x0B;
void QMC5883LComponent::setup() {
ESP_LOGCONFIG(TAG, "Running setup");
// Soft Reset
if (!this->write_byte(QMC5883L_REGISTER_CONTROL_2, 1 << 7)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
delay(10);
uint8_t control_1 = 0;
control_1 |= 0b01 << 0; // MODE (Mode) -> 0b00=standby, 0b01=continuous
control_1 |= this->datarate_ << 2;
control_1 |= this->range_ << 4;
control_1 |= this->oversampling_ << 6;
if (!this->write_byte(QMC5883L_REGISTER_CONTROL_1, control_1)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
uint8_t control_2 = 0;
control_2 |= 0b0 << 7; // SOFT_RST (Soft Reset) -> 0b00=disabled, 0b01=enabled
control_2 |= 0b0 << 6; // ROL_PNT (Pointer Roll Over) -> 0b00=disabled, 0b01=enabled
control_2 |= 0b0 << 0; // INT_ENB (Interrupt) -> 0b00=disabled, 0b01=enabled
if (!this->write_byte(QMC5883L_REGISTER_CONTROL_2, control_2)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
uint8_t period = 0x01; // recommended value
if (!this->write_byte(QMC5883L_REGISTER_PERIOD, period)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
if (this->get_update_interval() < App.get_loop_interval()) {
high_freq_.start();
}
}
void QMC5883LComponent::dump_config() {
ESP_LOGCONFIG(TAG, "QMC5883L:");
LOG_I2C_DEVICE(this);
if (this->error_code_ == COMMUNICATION_FAILED) {
ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL);
}
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "X Axis", this->x_sensor_);
LOG_SENSOR(" ", "Y Axis", this->y_sensor_);
LOG_SENSOR(" ", "Z Axis", this->z_sensor_);
LOG_SENSOR(" ", "Heading", this->heading_sensor_);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
}
float QMC5883LComponent::get_setup_priority() const { return setup_priority::DATA; }
void QMC5883LComponent::update() {
i2c::ErrorCode err;
uint8_t status = false;
// Status byte gets cleared when data is read, so we have to read this first.
// If status and two axes are desired, it's possible to save one byte of traffic by enabling
// ROL_PNT in setup and reading 7 bytes starting at the status register.
// If status and all three axes are desired, using ROL_PNT saves you 3 bytes.
// But simply not reading status saves you 4 bytes always and is much simpler.
if (ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_DEBUG) {
err = this->read_register(QMC5883L_REGISTER_STATUS, &status, 1);
if (err != i2c::ERROR_OK) {
this->status_set_warning(str_sprintf("status read failed (%d)", err).c_str());
return;
}
}
uint16_t raw[3] = {0};
// Z must always be requested, otherwise the data registers will remain locked against updates.
// Skipping the Y axis if X and Z are needed actually requires an additional byte of comms.
// Starting partway through the axes does save you traffic.
uint8_t start, dest;
if (this->heading_sensor_ != nullptr || this->x_sensor_ != nullptr) {
start = QMC5883L_REGISTER_DATA_X_LSB;
dest = 0;
} else if (this->y_sensor_ != nullptr) {
start = QMC5883L_REGISTER_DATA_Y_LSB;
dest = 1;
} else {
start = QMC5883L_REGISTER_DATA_Z_LSB;
dest = 2;
}
err = this->read_bytes_16_le_(start, &raw[dest], 3 - dest);
if (err != i2c::ERROR_OK) {
this->status_set_warning(str_sprintf("mag read failed (%d)", err).c_str());
return;
}
float mg_per_bit;
switch (this->range_) {
case QMC5883L_RANGE_200_UT:
mg_per_bit = 0.0833f;
break;
case QMC5883L_RANGE_800_UT:
mg_per_bit = 0.333f;
break;
default:
mg_per_bit = NAN;
}
// in µT
const float x = int16_t(raw[0]) * mg_per_bit * 0.1f;
const float y = int16_t(raw[1]) * mg_per_bit * 0.1f;
const float z = int16_t(raw[2]) * mg_per_bit * 0.1f;
float heading = atan2f(0.0f - x, y) * 180.0f / M_PI;
float temp = NAN;
if (this->temperature_sensor_ != nullptr) {
uint16_t raw_temp;
err = this->read_bytes_16_le_(QMC5883L_REGISTER_TEMPERATURE_LSB, &raw_temp);
if (err != i2c::ERROR_OK) {
this->status_set_warning(str_sprintf("temp read failed (%d)", err).c_str());
return;
}
temp = int16_t(raw_temp) * 0.01f;
}
ESP_LOGD(TAG, "Got x=%0.02fµT y=%0.02fµT z=%0.02fµT heading=%0.01f° temperature=%0.01f°C status=%u", x, y, z, heading,
temp, status);
if (this->x_sensor_ != nullptr)
this->x_sensor_->publish_state(x);
if (this->y_sensor_ != nullptr)
this->y_sensor_->publish_state(y);
if (this->z_sensor_ != nullptr)
this->z_sensor_->publish_state(z);
if (this->heading_sensor_ != nullptr)
this->heading_sensor_->publish_state(heading);
if (this->temperature_sensor_ != nullptr)
this->temperature_sensor_->publish_state(temp);
}
i2c::ErrorCode QMC5883LComponent::read_bytes_16_le_(uint8_t a_register, uint16_t *data, uint8_t len) {
i2c::ErrorCode err = this->read_register(a_register, reinterpret_cast<uint8_t *>(data), len * 2);
if (err != i2c::ERROR_OK)
return err;
for (size_t i = 0; i < len; i++)
data[i] = convert_little_endian(data[i]);
return err;
}
} // namespace qmc5883l
} // namespace esphome