#include "qmc5883l.h" #include "esphome/core/application.h" #include "esphome/core/log.h" #include "esphome/core/hal.h" #include namespace esphome { namespace qmc5883l { static const char *const TAG = "qmc5883l"; static const uint8_t QMC5883L_ADDRESS = 0x0D; static const uint8_t QMC5883L_REGISTER_DATA_X_LSB = 0x00; static const uint8_t QMC5883L_REGISTER_DATA_X_MSB = 0x01; static const uint8_t QMC5883L_REGISTER_DATA_Y_LSB = 0x02; static const uint8_t QMC5883L_REGISTER_DATA_Y_MSB = 0x03; static const uint8_t QMC5883L_REGISTER_DATA_Z_LSB = 0x04; static const uint8_t QMC5883L_REGISTER_DATA_Z_MSB = 0x05; static const uint8_t QMC5883L_REGISTER_STATUS = 0x06; static const uint8_t QMC5883L_REGISTER_TEMPERATURE_LSB = 0x07; static const uint8_t QMC5883L_REGISTER_TEMPERATURE_MSB = 0x08; static const uint8_t QMC5883L_REGISTER_CONTROL_1 = 0x09; static const uint8_t QMC5883L_REGISTER_CONTROL_2 = 0x0A; static const uint8_t QMC5883L_REGISTER_PERIOD = 0x0B; void QMC5883LComponent::setup() { ESP_LOGCONFIG(TAG, "Running setup"); // Soft Reset if (!this->write_byte(QMC5883L_REGISTER_CONTROL_2, 1 << 7)) { this->error_code_ = COMMUNICATION_FAILED; this->mark_failed(); return; } delay(10); uint8_t control_1 = 0; control_1 |= 0b01 << 0; // MODE (Mode) -> 0b00=standby, 0b01=continuous control_1 |= this->datarate_ << 2; control_1 |= this->range_ << 4; control_1 |= this->oversampling_ << 6; if (!this->write_byte(QMC5883L_REGISTER_CONTROL_1, control_1)) { this->error_code_ = COMMUNICATION_FAILED; this->mark_failed(); return; } uint8_t control_2 = 0; control_2 |= 0b0 << 7; // SOFT_RST (Soft Reset) -> 0b00=disabled, 0b01=enabled control_2 |= 0b0 << 6; // ROL_PNT (Pointer Roll Over) -> 0b00=disabled, 0b01=enabled control_2 |= 0b0 << 0; // INT_ENB (Interrupt) -> 0b00=disabled, 0b01=enabled if (!this->write_byte(QMC5883L_REGISTER_CONTROL_2, control_2)) { this->error_code_ = COMMUNICATION_FAILED; this->mark_failed(); return; } uint8_t period = 0x01; // recommended value if (!this->write_byte(QMC5883L_REGISTER_PERIOD, period)) { this->error_code_ = COMMUNICATION_FAILED; this->mark_failed(); return; } if (this->get_update_interval() < App.get_loop_interval()) { high_freq_.start(); } } void QMC5883LComponent::dump_config() { ESP_LOGCONFIG(TAG, "QMC5883L:"); LOG_I2C_DEVICE(this); if (this->error_code_ == COMMUNICATION_FAILED) { ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL); } LOG_UPDATE_INTERVAL(this); LOG_SENSOR(" ", "X Axis", this->x_sensor_); LOG_SENSOR(" ", "Y Axis", this->y_sensor_); LOG_SENSOR(" ", "Z Axis", this->z_sensor_); LOG_SENSOR(" ", "Heading", this->heading_sensor_); LOG_SENSOR(" ", "Temperature", this->temperature_sensor_); } float QMC5883LComponent::get_setup_priority() const { return setup_priority::DATA; } void QMC5883LComponent::update() { i2c::ErrorCode err; uint8_t status = false; // Status byte gets cleared when data is read, so we have to read this first. // If status and two axes are desired, it's possible to save one byte of traffic by enabling // ROL_PNT in setup and reading 7 bytes starting at the status register. // If status and all three axes are desired, using ROL_PNT saves you 3 bytes. // But simply not reading status saves you 4 bytes always and is much simpler. if (ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_DEBUG) { err = this->read_register(QMC5883L_REGISTER_STATUS, &status, 1); if (err != i2c::ERROR_OK) { this->status_set_warning(str_sprintf("status read failed (%d)", err).c_str()); return; } } uint16_t raw[3] = {0}; // Z must always be requested, otherwise the data registers will remain locked against updates. // Skipping the Y axis if X and Z are needed actually requires an additional byte of comms. // Starting partway through the axes does save you traffic. uint8_t start, dest; if (this->heading_sensor_ != nullptr || this->x_sensor_ != nullptr) { start = QMC5883L_REGISTER_DATA_X_LSB; dest = 0; } else if (this->y_sensor_ != nullptr) { start = QMC5883L_REGISTER_DATA_Y_LSB; dest = 1; } else { start = QMC5883L_REGISTER_DATA_Z_LSB; dest = 2; } err = this->read_bytes_16_le_(start, &raw[dest], 3 - dest); if (err != i2c::ERROR_OK) { this->status_set_warning(str_sprintf("mag read failed (%d)", err).c_str()); return; } float mg_per_bit; switch (this->range_) { case QMC5883L_RANGE_200_UT: mg_per_bit = 0.0833f; break; case QMC5883L_RANGE_800_UT: mg_per_bit = 0.333f; break; default: mg_per_bit = NAN; } // in µT const float x = int16_t(raw[0]) * mg_per_bit * 0.1f; const float y = int16_t(raw[1]) * mg_per_bit * 0.1f; const float z = int16_t(raw[2]) * mg_per_bit * 0.1f; float heading = atan2f(0.0f - x, y) * 180.0f / M_PI; float temp = NAN; if (this->temperature_sensor_ != nullptr) { uint16_t raw_temp; err = this->read_bytes_16_le_(QMC5883L_REGISTER_TEMPERATURE_LSB, &raw_temp); if (err != i2c::ERROR_OK) { this->status_set_warning(str_sprintf("temp read failed (%d)", err).c_str()); return; } temp = int16_t(raw_temp) * 0.01f; } ESP_LOGD(TAG, "Got x=%0.02fµT y=%0.02fµT z=%0.02fµT heading=%0.01f° temperature=%0.01f°C status=%u", x, y, z, heading, temp, status); if (this->x_sensor_ != nullptr) this->x_sensor_->publish_state(x); if (this->y_sensor_ != nullptr) this->y_sensor_->publish_state(y); if (this->z_sensor_ != nullptr) this->z_sensor_->publish_state(z); if (this->heading_sensor_ != nullptr) this->heading_sensor_->publish_state(heading); if (this->temperature_sensor_ != nullptr) this->temperature_sensor_->publish_state(temp); } i2c::ErrorCode QMC5883LComponent::read_bytes_16_le_(uint8_t a_register, uint16_t *data, uint8_t len) { i2c::ErrorCode err = this->read_register(a_register, reinterpret_cast(data), len * 2); if (err != i2c::ERROR_OK) return err; for (size_t i = 0; i < len; i++) data[i] = convert_little_endian(data[i]); return err; } } // namespace qmc5883l } // namespace esphome