cogito/esphome_dev/esphome/components/atm90e32/atm90e32.h

237 lines
11 KiB
C++

#pragma once
#include <unordered_map>
#include "atm90e32_reg.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/spi/spi.h"
#include "esphome/core/application.h"
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
#include "esphome/core/preferences.h"
namespace esphome {
namespace atm90e32 {
class ATM90E32Component : public PollingComponent,
public spi::SPIDevice<spi::BIT_ORDER_MSB_FIRST, spi::CLOCK_POLARITY_HIGH,
spi::CLOCK_PHASE_TRAILING, spi::DATA_RATE_1MHZ> {
public:
static const uint8_t PHASEA = 0;
static const uint8_t PHASEB = 1;
static const uint8_t PHASEC = 2;
const char *phase_labels[3] = {"A", "B", "C"};
// these registers are not sucessive, so we can't just do 'base + phase'
const uint16_t voltage_gain_registers[3] = {ATM90E32_REGISTER_UGAINA, ATM90E32_REGISTER_UGAINB,
ATM90E32_REGISTER_UGAINC};
const uint16_t current_gain_registers[3] = {ATM90E32_REGISTER_IGAINA, ATM90E32_REGISTER_IGAINB,
ATM90E32_REGISTER_IGAINC};
const uint16_t voltage_offset_registers[3] = {ATM90E32_REGISTER_UOFFSETA, ATM90E32_REGISTER_UOFFSETB,
ATM90E32_REGISTER_UOFFSETC};
const uint16_t current_offset_registers[3] = {ATM90E32_REGISTER_IOFFSETA, ATM90E32_REGISTER_IOFFSETB,
ATM90E32_REGISTER_IOFFSETC};
const uint16_t power_offset_registers[3] = {ATM90E32_REGISTER_POFFSETA, ATM90E32_REGISTER_POFFSETB,
ATM90E32_REGISTER_POFFSETC};
const uint16_t reactive_power_offset_registers[3] = {ATM90E32_REGISTER_QOFFSETA, ATM90E32_REGISTER_QOFFSETB,
ATM90E32_REGISTER_QOFFSETC};
const uint16_t over_voltage_flags[3] = {ATM90E32_STATUS_S0_OVPHASEAST, ATM90E32_STATUS_S0_OVPHASEBST,
ATM90E32_STATUS_S0_OVPHASECST};
const uint16_t voltage_sag_flags[3] = {ATM90E32_STATUS_S1_SAGPHASEAST, ATM90E32_STATUS_S1_SAGPHASEBST,
ATM90E32_STATUS_S1_SAGPHASECST};
const uint16_t phase_loss_flags[3] = {ATM90E32_STATUS_S1_PHASELOSSAST, ATM90E32_STATUS_S1_PHASELOSSBST,
ATM90E32_STATUS_S1_PHASELOSSCST};
void loop() override;
void setup() override;
void dump_config() override;
float get_setup_priority() const override;
void update() override;
void set_voltage_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].voltage_sensor_ = obj; }
void set_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].current_sensor_ = obj; }
void set_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_sensor_ = obj; }
void set_reactive_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].reactive_power_sensor_ = obj; }
void set_apparent_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].apparent_power_sensor_ = obj; }
void set_forward_active_energy_sensor(int phase, sensor::Sensor *obj) {
this->phase_[phase].forward_active_energy_sensor_ = obj;
}
void set_reverse_active_energy_sensor(int phase, sensor::Sensor *obj) {
this->phase_[phase].reverse_active_energy_sensor_ = obj;
}
void set_power_factor_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_factor_sensor_ = obj; }
void set_phase_angle_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].phase_angle_sensor_ = obj; }
void set_harmonic_active_power_sensor(int phase, sensor::Sensor *obj) {
this->phase_[phase].harmonic_active_power_sensor_ = obj;
}
void set_peak_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].peak_current_sensor_ = obj; }
void set_volt_gain(int phase, uint16_t gain) { this->phase_[phase].voltage_gain_ = gain; }
void set_ct_gain(int phase, uint16_t gain) { this->phase_[phase].ct_gain_ = gain; }
void set_voltage_offset(uint8_t phase, int16_t offset) { this->offset_phase_[phase].voltage_offset_ = offset; }
void set_current_offset(uint8_t phase, int16_t offset) { this->offset_phase_[phase].current_offset_ = offset; }
void set_active_power_offset(uint8_t phase, int16_t offset) {
this->power_offset_phase_[phase].active_power_offset = offset;
}
void set_reactive_power_offset(uint8_t phase, int16_t offset) {
this->power_offset_phase_[phase].reactive_power_offset = offset;
}
void set_freq_sensor(sensor::Sensor *freq_sensor) { freq_sensor_ = freq_sensor; }
void set_peak_current_signed(bool flag) { peak_current_signed_ = flag; }
void set_chip_temperature_sensor(sensor::Sensor *chip_temperature_sensor) {
chip_temperature_sensor_ = chip_temperature_sensor;
}
void set_line_freq(int freq) { line_freq_ = freq; }
void set_current_phases(int phases) { current_phases_ = phases; }
void set_pga_gain(uint16_t gain) { pga_gain_ = gain; }
void run_offset_calibrations();
void run_power_offset_calibrations();
void clear_offset_calibrations();
void clear_power_offset_calibrations();
void clear_gain_calibrations();
void set_enable_offset_calibration(bool flag) { enable_offset_calibration_ = flag; }
void set_enable_gain_calibration(bool flag) { enable_gain_calibration_ = flag; }
int16_t calibrate_offset(uint8_t phase, bool voltage);
int16_t calibrate_power_offset(uint8_t phase, bool reactive);
void run_gain_calibrations();
#ifdef USE_NUMBER
void set_reference_voltage(uint8_t phase, number::Number *ref_voltage) { ref_voltages_[phase] = ref_voltage; }
void set_reference_current(uint8_t phase, number::Number *ref_current) { ref_currents_[phase] = ref_current; }
#endif
float get_reference_voltage(uint8_t phase) {
#ifdef USE_NUMBER
return (phase >= 0 && phase < 3 && ref_voltages_[phase]) ? ref_voltages_[phase]->state : 120.0; // Default voltage
#else
return 120.0; // Default voltage
#endif
}
float get_reference_current(uint8_t phase) {
#ifdef USE_NUMBER
return (phase >= 0 && phase < 3 && ref_currents_[phase]) ? ref_currents_[phase]->state : 5.0f; // Default current
#else
return 5.0f; // Default current
#endif
}
bool using_saved_calibrations_ = false; // Track if stored calibrations are being used
#ifdef USE_TEXT_SENSOR
void check_phase_status();
void check_freq_status();
void check_over_current();
void set_phase_status_text_sensor(uint8_t phase, text_sensor::TextSensor *sensor) {
this->phase_status_text_sensor_[phase] = sensor;
}
void set_freq_status_text_sensor(text_sensor::TextSensor *sensor) { this->freq_status_text_sensor_ = sensor; }
#endif
uint16_t calculate_voltage_threshold(int line_freq, uint16_t ugain, float multiplier);
int32_t last_periodic_millis = millis();
protected:
#ifdef USE_NUMBER
number::Number *ref_voltages_[3]{nullptr, nullptr, nullptr};
number::Number *ref_currents_[3]{nullptr, nullptr, nullptr};
#endif
uint16_t read16_(uint16_t a_register);
int read32_(uint16_t addr_h, uint16_t addr_l);
void write16_(uint16_t a_register, uint16_t val);
float get_local_phase_voltage_(uint8_t phase);
float get_local_phase_current_(uint8_t phase);
float get_local_phase_active_power_(uint8_t phase);
float get_local_phase_reactive_power_(uint8_t phase);
float get_local_phase_apparent_power_(uint8_t phase);
float get_local_phase_power_factor_(uint8_t phase);
float get_local_phase_forward_active_energy_(uint8_t phase);
float get_local_phase_reverse_active_energy_(uint8_t phase);
float get_local_phase_angle_(uint8_t phase);
float get_local_phase_harmonic_active_power_(uint8_t phase);
float get_local_phase_peak_current_(uint8_t phase);
float get_phase_voltage_(uint8_t phase);
float get_phase_voltage_avg_(uint8_t phase);
float get_phase_current_(uint8_t phase);
float get_phase_current_avg_(uint8_t phase);
float get_phase_active_power_(uint8_t phase);
float get_phase_reactive_power_(uint8_t phase);
float get_phase_apparent_power_(uint8_t phase);
float get_phase_power_factor_(uint8_t phase);
float get_phase_forward_active_energy_(uint8_t phase);
float get_phase_reverse_active_energy_(uint8_t phase);
float get_phase_angle_(uint8_t phase);
float get_phase_harmonic_active_power_(uint8_t phase);
float get_phase_peak_current_(uint8_t phase);
float get_frequency_();
float get_chip_temperature_();
bool get_publish_interval_flag_() { return publish_interval_flag_; };
void set_publish_interval_flag_(bool flag) { publish_interval_flag_ = flag; };
void restore_offset_calibrations_();
void restore_power_offset_calibrations_();
void restore_gain_calibrations_();
void save_gain_calibration_to_memory_();
void write_offsets_to_registers_(uint8_t phase, int16_t voltage_offset, int16_t current_offset);
void write_power_offsets_to_registers_(uint8_t phase, int16_t p_offset, int16_t q_offset);
void write_gains_to_registers_();
bool verify_gain_writes_();
bool validate_spi_read_(uint16_t expected, const char *context = nullptr);
struct ATM90E32Phase {
uint16_t voltage_gain_{0};
uint16_t ct_gain_{0};
int16_t voltage_offset_{0};
int16_t current_offset_{0};
int16_t active_power_offset_{0};
int16_t reactive_power_offset_{0};
float voltage_{0};
float current_{0};
float active_power_{0};
float reactive_power_{0};
float apparent_power_{0};
float power_factor_{0};
float forward_active_energy_{0};
float reverse_active_energy_{0};
float phase_angle_{0};
float harmonic_active_power_{0};
float peak_current_{0};
sensor::Sensor *voltage_sensor_{nullptr};
sensor::Sensor *current_sensor_{nullptr};
sensor::Sensor *power_sensor_{nullptr};
sensor::Sensor *reactive_power_sensor_{nullptr};
sensor::Sensor *apparent_power_sensor_{nullptr};
sensor::Sensor *power_factor_sensor_{nullptr};
sensor::Sensor *forward_active_energy_sensor_{nullptr};
sensor::Sensor *reverse_active_energy_sensor_{nullptr};
sensor::Sensor *phase_angle_sensor_{nullptr};
sensor::Sensor *harmonic_active_power_sensor_{nullptr};
sensor::Sensor *peak_current_sensor_{nullptr};
uint32_t cumulative_forward_active_energy_{0};
uint32_t cumulative_reverse_active_energy_{0};
} phase_[3];
struct OffsetCalibration {
int16_t voltage_offset_{0};
int16_t current_offset_{0};
} offset_phase_[3];
struct PowerOffsetCalibration {
int16_t active_power_offset{0};
int16_t reactive_power_offset{0};
} power_offset_phase_[3];
struct GainCalibration {
uint16_t voltage_gain{1};
uint16_t current_gain{1};
} gain_phase_[3];
ESPPreferenceObject offset_pref_;
ESPPreferenceObject power_offset_pref_;
ESPPreferenceObject gain_calibration_pref_;
sensor::Sensor *freq_sensor_{nullptr};
#ifdef USE_TEXT_SENSOR
text_sensor::TextSensor *phase_status_text_sensor_[3]{nullptr};
text_sensor::TextSensor *freq_status_text_sensor_{nullptr};
#endif
sensor::Sensor *chip_temperature_sensor_{nullptr};
uint16_t pga_gain_{0x15};
int line_freq_{60};
int current_phases_{3};
bool publish_interval_flag_{false};
bool peak_current_signed_{false};
bool enable_offset_calibration_{false};
bool enable_gain_calibration_{false};
};
} // namespace atm90e32
} // namespace esphome