#include "esphome/core/helpers.h" #include "esphome/core/defines.h" #include "esphome/core/hal.h" #include "esphome/core/log.h" #include #include #include #include #include #include #include #ifdef USE_HOST #ifndef _WIN32 #include #include #include #endif #include #endif #if defined(USE_ESP8266) #include #include // for xt_rsil()/xt_wsr_ps() #include #elif defined(USE_ESP32_FRAMEWORK_ARDUINO) #include #elif defined(USE_ESP_IDF) #include #include #include "esp_random.h" #include "esp_system.h" #elif defined(USE_RP2040) #if defined(USE_WIFI) #include #endif #include #include #elif defined(USE_HOST) #include #include #endif #ifdef USE_ESP32 #include "rom/crc.h" #include "esp_mac.h" #include "esp_efuse.h" #include "esp_efuse_table.h" #endif #ifdef USE_LIBRETINY #include // for macAddress() #endif namespace esphome { static const char *const TAG = "helpers"; static const uint16_t CRC16_A001_LE_LUT_L[] = {0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241, 0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440}; static const uint16_t CRC16_A001_LE_LUT_H[] = {0x0000, 0xcc01, 0xd801, 0x1400, 0xf001, 0x3c00, 0x2800, 0xe401, 0xa001, 0x6c00, 0x7800, 0xb401, 0x5000, 0x9c01, 0x8801, 0x4400}; #ifndef USE_ESP32 static const uint16_t CRC16_8408_LE_LUT_L[] = {0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7}; static const uint16_t CRC16_8408_LE_LUT_H[] = {0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387, 0x8408, 0x9489, 0xa50a, 0xb58b, 0xc60c, 0xd68d, 0xe70e, 0xf78f}; #endif #if !defined(USE_ESP32) || defined(USE_ESP32_VARIANT_ESP32S2) static const uint16_t CRC16_1021_BE_LUT_L[] = {0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef}; static const uint16_t CRC16_1021_BE_LUT_H[] = {0x0000, 0x1231, 0x2462, 0x3653, 0x48c4, 0x5af5, 0x6ca6, 0x7e97, 0x9188, 0x83b9, 0xb5ea, 0xa7db, 0xd94c, 0xcb7d, 0xfd2e, 0xef1f}; #endif // STL backports #if _GLIBCXX_RELEASE < 8 std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT std::string to_string(float value) { return str_snprintf("%f", 32, value); } std::string to_string(double value) { return str_snprintf("%f", 32, value); } std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); } #endif // Mathematics float lerp(float completion, float start, float end) { return start + (end - start) * completion; } uint8_t crc8(const uint8_t *data, uint8_t len) { uint8_t crc = 0; while ((len--) != 0u) { uint8_t inbyte = *data++; for (uint8_t i = 8; i != 0u; i--) { bool mix = (crc ^ inbyte) & 0x01; crc >>= 1; if (mix) crc ^= 0x8C; inbyte >>= 1; } } return crc; } uint16_t crc16(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t reverse_poly, bool refin, bool refout) { #ifdef USE_ESP32 if (reverse_poly == 0x8408) { crc = crc16_le(refin ? crc : (crc ^ 0xffff), data, len); return refout ? crc : (crc ^ 0xffff); } #endif if (refin) { crc ^= 0xffff; } #ifndef USE_ESP32 if (reverse_poly == 0x8408) { while (len--) { uint8_t combo = crc ^ (uint8_t) *data++; crc = (crc >> 8) ^ CRC16_8408_LE_LUT_L[combo & 0x0F] ^ CRC16_8408_LE_LUT_H[combo >> 4]; } } else #endif { if (reverse_poly == 0xa001) { while (len--) { uint8_t combo = crc ^ (uint8_t) *data++; crc = (crc >> 8) ^ CRC16_A001_LE_LUT_L[combo & 0x0F] ^ CRC16_A001_LE_LUT_H[combo >> 4]; } } else { while (len--) { crc ^= *data++; for (uint8_t i = 0; i < 8; i++) { if (crc & 0x0001) { crc = (crc >> 1) ^ reverse_poly; } else { crc >>= 1; } } } } } return refout ? (crc ^ 0xffff) : crc; } uint16_t crc16be(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t poly, bool refin, bool refout) { #if defined(USE_ESP32) && !defined(USE_ESP32_VARIANT_ESP32S2) if (poly == 0x1021) { crc = crc16_be(refin ? crc : (crc ^ 0xffff), data, len); return refout ? crc : (crc ^ 0xffff); } #endif if (refin) { crc ^= 0xffff; } #if !defined(USE_ESP32) || defined(USE_ESP32_VARIANT_ESP32S2) if (poly == 0x1021) { while (len--) { uint8_t combo = (crc >> 8) ^ *data++; crc = (crc << 8) ^ CRC16_1021_BE_LUT_L[combo & 0x0F] ^ CRC16_1021_BE_LUT_H[combo >> 4]; } } else { #endif while (len--) { crc ^= (((uint16_t) *data++) << 8); for (uint8_t i = 0; i < 8; i++) { if (crc & 0x8000) { crc = (crc << 1) ^ poly; } else { crc <<= 1; } } } #if !defined(USE_ESP32) || defined(USE_ESP32_VARIANT_ESP32S2) } #endif return refout ? (crc ^ 0xffff) : crc; } uint32_t fnv1_hash(const std::string &str) { uint32_t hash = 2166136261UL; for (char c : str) { hash *= 16777619UL; hash ^= c; } return hash; } #ifdef USE_ESP32 uint32_t random_uint32() { return esp_random(); } #elif defined(USE_ESP8266) uint32_t random_uint32() { return os_random(); } #elif defined(USE_RP2040) uint32_t random_uint32() { uint32_t result = 0; for (uint8_t i = 0; i < 32; i++) { result <<= 1; result |= rosc_hw->randombit; } return result; } #elif defined(USE_LIBRETINY) uint32_t random_uint32() { return rand(); } #elif defined(USE_HOST) uint32_t random_uint32() { std::random_device dev; std::mt19937 rng(dev()); std::uniform_int_distribution dist(0, std::numeric_limits::max()); return dist(rng); } #endif float random_float() { return static_cast(random_uint32()) / static_cast(UINT32_MAX); } #ifdef USE_ESP32 bool random_bytes(uint8_t *data, size_t len) { esp_fill_random(data, len); return true; } #elif defined(USE_ESP8266) bool random_bytes(uint8_t *data, size_t len) { return os_get_random(data, len) == 0; } #elif defined(USE_RP2040) bool random_bytes(uint8_t *data, size_t len) { while (len-- != 0) { uint8_t result = 0; for (uint8_t i = 0; i < 8; i++) { result <<= 1; result |= rosc_hw->randombit; } *data++ = result; } return true; } #elif defined(USE_LIBRETINY) bool random_bytes(uint8_t *data, size_t len) { lt_rand_bytes(data, len); return true; } #elif defined(USE_HOST) bool random_bytes(uint8_t *data, size_t len) { FILE *fp = fopen("/dev/urandom", "r"); if (fp == nullptr) { ESP_LOGW(TAG, "Could not open /dev/urandom, errno=%d", errno); exit(1); } size_t read = fread(data, 1, len, fp); if (read != len) { ESP_LOGW(TAG, "Not enough data from /dev/urandom"); exit(1); } fclose(fp); return true; } #endif // Strings bool str_equals_case_insensitive(const std::string &a, const std::string &b) { return strcasecmp(a.c_str(), b.c_str()) == 0; } #if __cplusplus >= 202002L bool str_startswith(const std::string &str, const std::string &start) { return str.starts_with(start); } bool str_endswith(const std::string &str, const std::string &end) { return str.ends_with(end); } #else bool str_startswith(const std::string &str, const std::string &start) { return str.rfind(start, 0) == 0; } bool str_endswith(const std::string &str, const std::string &end) { return str.rfind(end) == (str.size() - end.size()); } #endif std::string str_truncate(const std::string &str, size_t length) { return str.length() > length ? str.substr(0, length) : str; } std::string str_until(const char *str, char ch) { const char *pos = strchr(str, ch); return pos == nullptr ? std::string(str) : std::string(str, pos - str); } std::string str_until(const std::string &str, char ch) { return str.substr(0, str.find(ch)); } // wrapper around std::transform to run safely on functions from the ctype.h header // see https://en.cppreference.com/w/cpp/string/byte/toupper#Notes template std::string str_ctype_transform(const std::string &str) { std::string result; result.resize(str.length()); std::transform(str.begin(), str.end(), result.begin(), [](unsigned char ch) { return fn(ch); }); return result; } std::string str_lower_case(const std::string &str) { return str_ctype_transform(str); } std::string str_upper_case(const std::string &str) { return str_ctype_transform(str); } std::string str_snake_case(const std::string &str) { std::string result; result.resize(str.length()); std::transform(str.begin(), str.end(), result.begin(), ::tolower); std::replace(result.begin(), result.end(), ' ', '_'); return result; } std::string str_sanitize(const std::string &str) { std::string out = str; std::replace_if( out.begin(), out.end(), [](const char &c) { return c != '-' && c != '_' && (c < '0' || c > '9') && (c < 'a' || c > 'z') && (c < 'A' || c > 'Z'); }, '_'); return out; } std::string str_snprintf(const char *fmt, size_t len, ...) { std::string str; va_list args; str.resize(len); va_start(args, len); size_t out_length = vsnprintf(&str[0], len + 1, fmt, args); va_end(args); if (out_length < len) str.resize(out_length); return str; } std::string str_sprintf(const char *fmt, ...) { std::string str; va_list args; va_start(args, fmt); size_t length = vsnprintf(nullptr, 0, fmt, args); va_end(args); str.resize(length); va_start(args, fmt); vsnprintf(&str[0], length + 1, fmt, args); va_end(args); return str; } // Parsing & formatting size_t parse_hex(const char *str, size_t length, uint8_t *data, size_t count) { uint8_t val; size_t chars = std::min(length, 2 * count); for (size_t i = 2 * count - chars; i < 2 * count; i++, str++) { if (*str >= '0' && *str <= '9') { val = *str - '0'; } else if (*str >= 'A' && *str <= 'F') { val = 10 + (*str - 'A'); } else if (*str >= 'a' && *str <= 'f') { val = 10 + (*str - 'a'); } else { return 0; } data[i >> 1] = !(i & 1) ? val << 4 : data[i >> 1] | val; } return chars; } static char format_hex_char(uint8_t v) { return v >= 10 ? 'a' + (v - 10) : '0' + v; } std::string format_hex(const uint8_t *data, size_t length) { std::string ret; ret.resize(length * 2); for (size_t i = 0; i < length; i++) { ret[2 * i] = format_hex_char((data[i] & 0xF0) >> 4); ret[2 * i + 1] = format_hex_char(data[i] & 0x0F); } return ret; } std::string format_hex(const std::vector &data) { return format_hex(data.data(), data.size()); } static char format_hex_pretty_char(uint8_t v) { return v >= 10 ? 'A' + (v - 10) : '0' + v; } std::string format_hex_pretty(const uint8_t *data, size_t length) { if (length == 0) return ""; std::string ret; ret.resize(3 * length - 1); for (size_t i = 0; i < length; i++) { ret[3 * i] = format_hex_pretty_char((data[i] & 0xF0) >> 4); ret[3 * i + 1] = format_hex_pretty_char(data[i] & 0x0F); if (i != length - 1) ret[3 * i + 2] = '.'; } if (length > 4) return ret + " (" + to_string(length) + ")"; return ret; } std::string format_hex_pretty(const std::vector &data) { return format_hex_pretty(data.data(), data.size()); } std::string format_hex_pretty(const uint16_t *data, size_t length) { if (length == 0) return ""; std::string ret; ret.resize(5 * length - 1); for (size_t i = 0; i < length; i++) { ret[5 * i] = format_hex_pretty_char((data[i] & 0xF000) >> 12); ret[5 * i + 1] = format_hex_pretty_char((data[i] & 0x0F00) >> 8); ret[5 * i + 2] = format_hex_pretty_char((data[i] & 0x00F0) >> 4); ret[5 * i + 3] = format_hex_pretty_char(data[i] & 0x000F); if (i != length - 1) ret[5 * i + 2] = '.'; } if (length > 4) return ret + " (" + to_string(length) + ")"; return ret; } std::string format_hex_pretty(const std::vector &data) { return format_hex_pretty(data.data(), data.size()); } std::string format_bin(const uint8_t *data, size_t length) { std::string result; result.resize(length * 8); for (size_t byte_idx = 0; byte_idx < length; byte_idx++) { for (size_t bit_idx = 0; bit_idx < 8; bit_idx++) { result[byte_idx * 8 + bit_idx] = ((data[byte_idx] >> (7 - bit_idx)) & 1) + '0'; } } return result; } ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) { if (on == nullptr && strcasecmp(str, "on") == 0) return PARSE_ON; if (on != nullptr && strcasecmp(str, on) == 0) return PARSE_ON; if (off == nullptr && strcasecmp(str, "off") == 0) return PARSE_OFF; if (off != nullptr && strcasecmp(str, off) == 0) return PARSE_OFF; if (strcasecmp(str, "toggle") == 0) return PARSE_TOGGLE; return PARSE_NONE; } std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) { if (accuracy_decimals < 0) { auto multiplier = powf(10.0f, accuracy_decimals); value = roundf(value * multiplier) / multiplier; accuracy_decimals = 0; } char tmp[32]; // should be enough, but we should maybe improve this at some point. snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value); return std::string(tmp); } int8_t step_to_accuracy_decimals(float step) { // use printf %g to find number of digits based on temperature step char buf[32]; snprintf(buf, sizeof buf, "%.5g", step); std::string str{buf}; size_t dot_pos = str.find('.'); if (dot_pos == std::string::npos) return 0; return str.length() - dot_pos - 1; } static const std::string BASE64_CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static inline bool is_base64(char c) { return (isalnum(c) || (c == '+') || (c == '/')); } std::string base64_encode(const std::vector &buf) { return base64_encode(buf.data(), buf.size()); } std::string base64_encode(const uint8_t *buf, size_t buf_len) { std::string ret; int i = 0; int j = 0; char char_array_3[3]; char char_array_4[4]; while (buf_len--) { char_array_3[i++] = *(buf++); if (i == 3) { char_array_4[0] = (char_array_3[0] & 0xfc) >> 2; char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4); char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6); char_array_4[3] = char_array_3[2] & 0x3f; for (i = 0; (i < 4); i++) ret += BASE64_CHARS[char_array_4[i]]; i = 0; } } if (i) { for (j = i; j < 3; j++) char_array_3[j] = '\0'; char_array_4[0] = (char_array_3[0] & 0xfc) >> 2; char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4); char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6); char_array_4[3] = char_array_3[2] & 0x3f; for (j = 0; (j < i + 1); j++) ret += BASE64_CHARS[char_array_4[j]]; while ((i++ < 3)) ret += '='; } return ret; } size_t base64_decode(const std::string &encoded_string, uint8_t *buf, size_t buf_len) { std::vector decoded = base64_decode(encoded_string); if (decoded.size() > buf_len) { ESP_LOGW(TAG, "Base64 decode: buffer too small, truncating"); decoded.resize(buf_len); } memcpy(buf, decoded.data(), decoded.size()); return decoded.size(); } std::vector base64_decode(const std::string &encoded_string) { int in_len = encoded_string.size(); int i = 0; int j = 0; int in = 0; uint8_t char_array_4[4], char_array_3[3]; std::vector ret; while (in_len-- && (encoded_string[in] != '=') && is_base64(encoded_string[in])) { char_array_4[i++] = encoded_string[in]; in++; if (i == 4) { for (i = 0; i < 4; i++) char_array_4[i] = BASE64_CHARS.find(char_array_4[i]); char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (i = 0; (i < 3); i++) ret.push_back(char_array_3[i]); i = 0; } } if (i) { for (j = i; j < 4; j++) char_array_4[j] = 0; for (j = 0; j < 4; j++) char_array_4[j] = BASE64_CHARS.find(char_array_4[j]); char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (j = 0; (j < i - 1); j++) ret.push_back(char_array_3[j]); } return ret; } // Colors float gamma_correct(float value, float gamma) { if (value <= 0.0f) return 0.0f; if (gamma <= 0.0f) return value; return powf(value, gamma); } float gamma_uncorrect(float value, float gamma) { if (value <= 0.0f) return 0.0f; if (gamma <= 0.0f) return value; return powf(value, 1 / gamma); } void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) { float max_color_value = std::max(std::max(red, green), blue); float min_color_value = std::min(std::min(red, green), blue); float delta = max_color_value - min_color_value; if (delta == 0) { hue = 0; } else if (max_color_value == red) { hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360)); } else if (max_color_value == green) { hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360)); } else if (max_color_value == blue) { hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360)); } if (max_color_value == 0) { saturation = 0; } else { saturation = delta / max_color_value; } value = max_color_value; } void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) { float chroma = value * saturation; float hue_prime = fmod(hue / 60.0, 6); float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1)); float delta = value - chroma; if (0 <= hue_prime && hue_prime < 1) { red = chroma; green = intermediate; blue = 0; } else if (1 <= hue_prime && hue_prime < 2) { red = intermediate; green = chroma; blue = 0; } else if (2 <= hue_prime && hue_prime < 3) { red = 0; green = chroma; blue = intermediate; } else if (3 <= hue_prime && hue_prime < 4) { red = 0; green = intermediate; blue = chroma; } else if (4 <= hue_prime && hue_prime < 5) { red = intermediate; green = 0; blue = chroma; } else if (5 <= hue_prime && hue_prime < 6) { red = chroma; green = 0; blue = intermediate; } else { red = 0; green = 0; blue = 0; } red += delta; green += delta; blue += delta; } // System APIs #if defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_HOST) // ESP8266 doesn't have mutexes, but that shouldn't be an issue as it's single-core and non-preemptive OS. Mutex::Mutex() {} Mutex::~Mutex() {} void Mutex::lock() {} bool Mutex::try_lock() { return true; } void Mutex::unlock() {} #elif defined(USE_ESP32) || defined(USE_LIBRETINY) Mutex::Mutex() { handle_ = xSemaphoreCreateMutex(); } Mutex::~Mutex() {} void Mutex::lock() { xSemaphoreTake(this->handle_, portMAX_DELAY); } bool Mutex::try_lock() { return xSemaphoreTake(this->handle_, 0) == pdTRUE; } void Mutex::unlock() { xSemaphoreGive(this->handle_); } #endif #if defined(USE_ESP8266) IRAM_ATTR InterruptLock::InterruptLock() { state_ = xt_rsil(15); } IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(state_); } #elif defined(USE_ESP32) || defined(USE_LIBRETINY) // only affects the executing core // so should not be used as a mutex lock, only to get accurate timing IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); } IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); } #elif defined(USE_RP2040) IRAM_ATTR InterruptLock::InterruptLock() { state_ = save_and_disable_interrupts(); } IRAM_ATTR InterruptLock::~InterruptLock() { restore_interrupts(state_); } #endif uint8_t HighFrequencyLoopRequester::num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) void HighFrequencyLoopRequester::start() { if (this->started_) return; num_requests++; this->started_ = true; } void HighFrequencyLoopRequester::stop() { if (!this->started_) return; num_requests--; this->started_ = false; } bool HighFrequencyLoopRequester::is_high_frequency() { return num_requests > 0; } #if defined(USE_HOST) void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter) static const uint8_t esphome_host_mac_address[6] = USE_ESPHOME_HOST_MAC_ADDRESS; memcpy(mac, esphome_host_mac_address, sizeof(esphome_host_mac_address)); } #elif defined(USE_ESP32) void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter) #if defined(CONFIG_SOC_IEEE802154_SUPPORTED) // When CONFIG_SOC_IEEE802154_SUPPORTED is defined, esp_efuse_mac_get_default // returns the 802.15.4 EUI-64 address, so we read directly from eFuse instead. if (has_custom_mac_address()) { esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48); } else { esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48); } #else if (has_custom_mac_address()) { esp_efuse_mac_get_custom(mac); } else { esp_efuse_mac_get_default(mac); } #endif } #elif defined(USE_ESP8266) void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter) wifi_get_macaddr(STATION_IF, mac); } #elif defined(USE_RP2040) void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter) #ifdef USE_WIFI WiFi.macAddress(mac); #endif } #elif defined(USE_LIBRETINY) void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter) WiFi.macAddress(mac); } #endif std::string get_mac_address() { uint8_t mac[6]; get_mac_address_raw(mac); return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } std::string get_mac_address_pretty() { uint8_t mac[6]; get_mac_address_raw(mac); return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } #ifdef USE_ESP32 void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); } #endif bool has_custom_mac_address() { #if defined(USE_ESP32) && !defined(USE_ESP32_IGNORE_EFUSE_CUSTOM_MAC) uint8_t mac[6]; // do not use 'esp_efuse_mac_get_custom(mac)' because it drops an error in the logs whenever it fails #ifndef USE_ESP32_VARIANT_ESP32 return (esp_efuse_read_field_blob(ESP_EFUSE_USER_DATA_MAC_CUSTOM, mac, 48) == ESP_OK) && mac_address_is_valid(mac); #else return (esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48) == ESP_OK) && mac_address_is_valid(mac); #endif #else return false; #endif } bool mac_address_is_valid(const uint8_t *mac) { bool is_all_zeros = true; bool is_all_ones = true; for (uint8_t i = 0; i < 6; i++) { if (mac[i] != 0) { is_all_zeros = false; } } for (uint8_t i = 0; i < 6; i++) { if (mac[i] != 0xFF) { is_all_ones = false; } } return !(is_all_zeros || is_all_ones); } void IRAM_ATTR HOT delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability uint32_t start = micros(); const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop. // it must be larger than the worst-case duration of a delay(1) call (hardware tasks) // 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known if (us > lag) { delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep while (micros() - start < us - lag) delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks } while (micros() - start < us) // fine delay the remaining usecs ; } } // namespace esphome