import logging import math from esphome import automation import esphome.codegen as cg from esphome.components import mqtt, web_server import esphome.config_validation as cv from esphome.const import ( CONF_ABOVE, CONF_ACCURACY_DECIMALS, CONF_ALPHA, CONF_BELOW, CONF_CALIBRATION, CONF_DEVICE_CLASS, CONF_ENTITY_CATEGORY, CONF_EXPIRE_AFTER, CONF_FILTERS, CONF_FORCE_UPDATE, CONF_FROM, CONF_ICON, CONF_ID, CONF_IGNORE_OUT_OF_RANGE, CONF_MAX_VALUE, CONF_METHOD, CONF_MIN_VALUE, CONF_MQTT_ID, CONF_MULTIPLE, CONF_ON_RAW_VALUE, CONF_ON_VALUE, CONF_ON_VALUE_RANGE, CONF_QUANTILE, CONF_SEND_EVERY, CONF_SEND_FIRST_AT, CONF_STATE_CLASS, CONF_TEMPERATURE, CONF_TIMEOUT, CONF_TO, CONF_TRIGGER_ID, CONF_TYPE, CONF_UNIT_OF_MEASUREMENT, CONF_VALUE, CONF_WEB_SERVER, CONF_WINDOW_SIZE, DEVICE_CLASS_APPARENT_POWER, DEVICE_CLASS_AQI, DEVICE_CLASS_AREA, DEVICE_CLASS_ATMOSPHERIC_PRESSURE, DEVICE_CLASS_BATTERY, DEVICE_CLASS_BLOOD_GLUCOSE_CONCENTRATION, DEVICE_CLASS_CARBON_DIOXIDE, DEVICE_CLASS_CARBON_MONOXIDE, DEVICE_CLASS_CONDUCTIVITY, DEVICE_CLASS_CURRENT, DEVICE_CLASS_DATA_RATE, DEVICE_CLASS_DATA_SIZE, DEVICE_CLASS_DATE, DEVICE_CLASS_DISTANCE, DEVICE_CLASS_DURATION, DEVICE_CLASS_EMPTY, DEVICE_CLASS_ENERGY, DEVICE_CLASS_ENERGY_DISTANCE, DEVICE_CLASS_ENERGY_STORAGE, DEVICE_CLASS_FREQUENCY, DEVICE_CLASS_GAS, DEVICE_CLASS_HUMIDITY, DEVICE_CLASS_ILLUMINANCE, DEVICE_CLASS_IRRADIANCE, DEVICE_CLASS_MOISTURE, DEVICE_CLASS_MONETARY, DEVICE_CLASS_NITROGEN_DIOXIDE, DEVICE_CLASS_NITROGEN_MONOXIDE, DEVICE_CLASS_NITROUS_OXIDE, DEVICE_CLASS_OZONE, DEVICE_CLASS_PH, DEVICE_CLASS_PM1, DEVICE_CLASS_PM10, DEVICE_CLASS_PM25, DEVICE_CLASS_POWER, DEVICE_CLASS_POWER_FACTOR, DEVICE_CLASS_PRECIPITATION, DEVICE_CLASS_PRECIPITATION_INTENSITY, DEVICE_CLASS_PRESSURE, DEVICE_CLASS_REACTIVE_ENERGY, DEVICE_CLASS_REACTIVE_POWER, DEVICE_CLASS_SIGNAL_STRENGTH, DEVICE_CLASS_SOUND_PRESSURE, DEVICE_CLASS_SPEED, DEVICE_CLASS_SULPHUR_DIOXIDE, DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_TIMESTAMP, DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS, DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS_PARTS, DEVICE_CLASS_VOLTAGE, DEVICE_CLASS_VOLUME, DEVICE_CLASS_VOLUME_FLOW_RATE, DEVICE_CLASS_VOLUME_STORAGE, DEVICE_CLASS_WATER, DEVICE_CLASS_WEIGHT, DEVICE_CLASS_WIND_DIRECTION, DEVICE_CLASS_WIND_SPEED, ENTITY_CATEGORY_CONFIG, ) from esphome.core import CORE, coroutine_with_priority from esphome.cpp_generator import MockObjClass from esphome.cpp_helpers import setup_entity from esphome.util import Registry CODEOWNERS = ["@esphome/core"] DEVICE_CLASSES = [ DEVICE_CLASS_APPARENT_POWER, DEVICE_CLASS_AQI, DEVICE_CLASS_AREA, DEVICE_CLASS_ATMOSPHERIC_PRESSURE, DEVICE_CLASS_BATTERY, DEVICE_CLASS_BLOOD_GLUCOSE_CONCENTRATION, DEVICE_CLASS_CARBON_DIOXIDE, DEVICE_CLASS_CARBON_MONOXIDE, DEVICE_CLASS_CONDUCTIVITY, DEVICE_CLASS_CURRENT, DEVICE_CLASS_DATA_RATE, DEVICE_CLASS_DATA_SIZE, DEVICE_CLASS_DATE, DEVICE_CLASS_DISTANCE, DEVICE_CLASS_DURATION, DEVICE_CLASS_EMPTY, DEVICE_CLASS_ENERGY, DEVICE_CLASS_ENERGY_DISTANCE, DEVICE_CLASS_ENERGY_STORAGE, DEVICE_CLASS_FREQUENCY, DEVICE_CLASS_GAS, DEVICE_CLASS_HUMIDITY, DEVICE_CLASS_ILLUMINANCE, DEVICE_CLASS_IRRADIANCE, DEVICE_CLASS_MOISTURE, DEVICE_CLASS_MONETARY, DEVICE_CLASS_NITROGEN_DIOXIDE, DEVICE_CLASS_NITROGEN_MONOXIDE, DEVICE_CLASS_NITROUS_OXIDE, DEVICE_CLASS_OZONE, DEVICE_CLASS_PH, DEVICE_CLASS_PM1, DEVICE_CLASS_PM10, DEVICE_CLASS_PM25, DEVICE_CLASS_POWER, DEVICE_CLASS_POWER_FACTOR, DEVICE_CLASS_PRECIPITATION, DEVICE_CLASS_PRECIPITATION_INTENSITY, DEVICE_CLASS_PRESSURE, DEVICE_CLASS_REACTIVE_ENERGY, DEVICE_CLASS_REACTIVE_POWER, DEVICE_CLASS_SIGNAL_STRENGTH, DEVICE_CLASS_SOUND_PRESSURE, DEVICE_CLASS_SPEED, DEVICE_CLASS_SULPHUR_DIOXIDE, DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_TIMESTAMP, DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS, DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS_PARTS, DEVICE_CLASS_VOLTAGE, DEVICE_CLASS_VOLUME, DEVICE_CLASS_VOLUME_FLOW_RATE, DEVICE_CLASS_VOLUME_STORAGE, DEVICE_CLASS_WATER, DEVICE_CLASS_WEIGHT, DEVICE_CLASS_WIND_DIRECTION, DEVICE_CLASS_WIND_SPEED, ] _LOGGER = logging.getLogger(__name__) sensor_ns = cg.esphome_ns.namespace("sensor") StateClasses = sensor_ns.enum("StateClass") STATE_CLASSES = { "": StateClasses.STATE_CLASS_NONE, "measurement": StateClasses.STATE_CLASS_MEASUREMENT, "total_increasing": StateClasses.STATE_CLASS_TOTAL_INCREASING, "total": StateClasses.STATE_CLASS_TOTAL, } validate_state_class = cv.enum(STATE_CLASSES, lower=True, space="_") IS_PLATFORM_COMPONENT = True def validate_send_first_at(value): send_first_at = value.get(CONF_SEND_FIRST_AT) send_every = value[CONF_SEND_EVERY] if send_first_at is not None and send_first_at > send_every: raise cv.Invalid( f"send_first_at must be smaller than or equal to send_every! {send_first_at} <= {send_every}" ) return value FILTER_REGISTRY = Registry() validate_filters = cv.validate_registry("filter", FILTER_REGISTRY) def validate_datapoint(value): if isinstance(value, dict): return cv.Schema( { cv.Required(CONF_FROM): cv.float_, cv.Required(CONF_TO): cv.float_, } )(value) value = cv.string(value) if "->" not in value: raise cv.Invalid("Datapoint mapping must contain '->'") a, b = value.split("->", 1) a, b = a.strip(), b.strip() return validate_datapoint({CONF_FROM: cv.float_(a), CONF_TO: cv.float_(b)}) _SENSOR_ENTITY_CATEGORIES = { k: v for k, v in cv.ENTITY_CATEGORIES.items() if k != ENTITY_CATEGORY_CONFIG } def sensor_entity_category(value): return cv.enum(_SENSOR_ENTITY_CATEGORIES, lower=True)(value) # Base Sensor = sensor_ns.class_("Sensor", cg.EntityBase) SensorPtr = Sensor.operator("ptr") # Triggers SensorStateTrigger = sensor_ns.class_( "SensorStateTrigger", automation.Trigger.template(cg.float_) ) SensorRawStateTrigger = sensor_ns.class_( "SensorRawStateTrigger", automation.Trigger.template(cg.float_) ) ValueRangeTrigger = sensor_ns.class_( "ValueRangeTrigger", automation.Trigger.template(cg.float_), cg.Component ) SensorPublishAction = sensor_ns.class_("SensorPublishAction", automation.Action) # Filters Filter = sensor_ns.class_("Filter") QuantileFilter = sensor_ns.class_("QuantileFilter", Filter) MedianFilter = sensor_ns.class_("MedianFilter", Filter) SkipInitialFilter = sensor_ns.class_("SkipInitialFilter", Filter) MinFilter = sensor_ns.class_("MinFilter", Filter) MaxFilter = sensor_ns.class_("MaxFilter", Filter) SlidingWindowMovingAverageFilter = sensor_ns.class_( "SlidingWindowMovingAverageFilter", Filter ) ExponentialMovingAverageFilter = sensor_ns.class_( "ExponentialMovingAverageFilter", Filter ) ThrottleAverageFilter = sensor_ns.class_("ThrottleAverageFilter", Filter, cg.Component) LambdaFilter = sensor_ns.class_("LambdaFilter", Filter) OffsetFilter = sensor_ns.class_("OffsetFilter", Filter) MultiplyFilter = sensor_ns.class_("MultiplyFilter", Filter) FilterOutValueFilter = sensor_ns.class_("FilterOutValueFilter", Filter) ThrottleFilter = sensor_ns.class_("ThrottleFilter", Filter) TimeoutFilter = sensor_ns.class_("TimeoutFilter", Filter, cg.Component) DebounceFilter = sensor_ns.class_("DebounceFilter", Filter, cg.Component) HeartbeatFilter = sensor_ns.class_("HeartbeatFilter", Filter, cg.Component) DeltaFilter = sensor_ns.class_("DeltaFilter", Filter) OrFilter = sensor_ns.class_("OrFilter", Filter) CalibrateLinearFilter = sensor_ns.class_("CalibrateLinearFilter", Filter) ToNTCResistanceFilter = sensor_ns.class_("ToNTCResistanceFilter", Filter) ToNTCTemperatureFilter = sensor_ns.class_("ToNTCTemperatureFilter", Filter) CalibratePolynomialFilter = sensor_ns.class_("CalibratePolynomialFilter", Filter) SensorInRangeCondition = sensor_ns.class_("SensorInRangeCondition", Filter) ClampFilter = sensor_ns.class_("ClampFilter", Filter) RoundFilter = sensor_ns.class_("RoundFilter", Filter) RoundMultipleFilter = sensor_ns.class_("RoundMultipleFilter", Filter) validate_unit_of_measurement = cv.string_strict validate_accuracy_decimals = cv.int_ validate_icon = cv.icon validate_device_class = cv.one_of(*DEVICE_CLASSES, lower=True, space="_") _SENSOR_SCHEMA = ( cv.ENTITY_BASE_SCHEMA.extend(web_server.WEBSERVER_SORTING_SCHEMA) .extend(cv.MQTT_COMPONENT_SCHEMA) .extend( { cv.OnlyWith(CONF_MQTT_ID, "mqtt"): cv.declare_id(mqtt.MQTTSensorComponent), cv.GenerateID(): cv.declare_id(Sensor), cv.Optional(CONF_UNIT_OF_MEASUREMENT): validate_unit_of_measurement, cv.Optional(CONF_ACCURACY_DECIMALS): validate_accuracy_decimals, cv.Optional(CONF_DEVICE_CLASS): validate_device_class, cv.Optional(CONF_STATE_CLASS): validate_state_class, cv.Optional(CONF_ENTITY_CATEGORY): sensor_entity_category, cv.Optional("last_reset_type"): cv.invalid( "last_reset_type has been removed since 2021.9.0. state_class: total_increasing should be used for total values." ), cv.Optional(CONF_FORCE_UPDATE, default=False): cv.boolean, cv.Optional(CONF_EXPIRE_AFTER): cv.All( cv.requires_component("mqtt"), cv.Any(None, cv.positive_time_period_milliseconds), ), cv.Optional(CONF_FILTERS): validate_filters, cv.Optional(CONF_ON_VALUE): automation.validate_automation( { cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SensorStateTrigger), } ), cv.Optional(CONF_ON_RAW_VALUE): automation.validate_automation( { cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id( SensorRawStateTrigger ), } ), cv.Optional(CONF_ON_VALUE_RANGE): automation.validate_automation( { cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(ValueRangeTrigger), cv.Optional(CONF_ABOVE): cv.templatable(cv.float_), cv.Optional(CONF_BELOW): cv.templatable(cv.float_), }, cv.has_at_least_one_key(CONF_ABOVE, CONF_BELOW), ), } ) ) def sensor_schema( class_: MockObjClass = cv.UNDEFINED, *, unit_of_measurement: str = cv.UNDEFINED, icon: str = cv.UNDEFINED, accuracy_decimals: int = cv.UNDEFINED, device_class: str = cv.UNDEFINED, state_class: str = cv.UNDEFINED, entity_category: str = cv.UNDEFINED, ) -> cv.Schema: schema = {} if class_ is not cv.UNDEFINED: # Not optional. schema[cv.GenerateID()] = cv.declare_id(class_) for key, default, validator in [ (CONF_UNIT_OF_MEASUREMENT, unit_of_measurement, validate_unit_of_measurement), (CONF_ICON, icon, validate_icon), (CONF_ACCURACY_DECIMALS, accuracy_decimals, validate_accuracy_decimals), (CONF_DEVICE_CLASS, device_class, validate_device_class), (CONF_STATE_CLASS, state_class, validate_state_class), (CONF_ENTITY_CATEGORY, entity_category, sensor_entity_category), ]: if default is not cv.UNDEFINED: schema[cv.Optional(key, default=default)] = validator return _SENSOR_SCHEMA.extend(schema) # Remove before 2025.11.0 SENSOR_SCHEMA = sensor_schema() SENSOR_SCHEMA.add_extra(cv.deprecated_schema_constant("sensor")) @FILTER_REGISTRY.register("offset", OffsetFilter, cv.templatable(cv.float_)) async def offset_filter_to_code(config, filter_id): template_ = await cg.templatable(config, [], float) return cg.new_Pvariable(filter_id, template_) @FILTER_REGISTRY.register("multiply", MultiplyFilter, cv.templatable(cv.float_)) async def multiply_filter_to_code(config, filter_id): template_ = await cg.templatable(config, [], float) return cg.new_Pvariable(filter_id, template_) @FILTER_REGISTRY.register( "filter_out", FilterOutValueFilter, cv.Any(cv.templatable(cv.float_), [cv.templatable(cv.float_)]), ) async def filter_out_filter_to_code(config, filter_id): if not isinstance(config, list): config = [config] template_ = [await cg.templatable(x, [], float) for x in config] return cg.new_Pvariable(filter_id, template_) QUANTILE_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int, cv.Optional(CONF_QUANTILE, default=0.9): cv.zero_to_one_float, } ), validate_send_first_at, ) @FILTER_REGISTRY.register("quantile", QuantileFilter, QUANTILE_SCHEMA) async def quantile_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_WINDOW_SIZE], config[CONF_SEND_EVERY], config[CONF_SEND_FIRST_AT], config[CONF_QUANTILE], ) MEDIAN_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int, } ), validate_send_first_at, ) @FILTER_REGISTRY.register("median", MedianFilter, MEDIAN_SCHEMA) async def median_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_WINDOW_SIZE], config[CONF_SEND_EVERY], config[CONF_SEND_FIRST_AT], ) MIN_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int, } ), validate_send_first_at, ) @FILTER_REGISTRY.register("skip_initial", SkipInitialFilter, cv.positive_not_null_int) async def skip_initial_filter_to_code(config, filter_id): return cg.new_Pvariable(filter_id, config) @FILTER_REGISTRY.register("min", MinFilter, MIN_SCHEMA) async def min_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_WINDOW_SIZE], config[CONF_SEND_EVERY], config[CONF_SEND_FIRST_AT], ) MAX_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int, cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int, } ), validate_send_first_at, ) @FILTER_REGISTRY.register("max", MaxFilter, MAX_SCHEMA) async def max_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_WINDOW_SIZE], config[CONF_SEND_EVERY], config[CONF_SEND_FIRST_AT], ) SLIDING_AVERAGE_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_WINDOW_SIZE, default=15): cv.positive_not_null_int, cv.Optional(CONF_SEND_EVERY, default=15): cv.positive_not_null_int, cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int, } ), validate_send_first_at, ) @FILTER_REGISTRY.register( "sliding_window_moving_average", SlidingWindowMovingAverageFilter, SLIDING_AVERAGE_SCHEMA, ) async def sliding_window_moving_average_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_WINDOW_SIZE], config[CONF_SEND_EVERY], config[CONF_SEND_FIRST_AT], ) EXPONENTIAL_AVERAGE_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_ALPHA, default=0.1): cv.positive_float, cv.Optional(CONF_SEND_EVERY, default=15): cv.positive_not_null_int, cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int, } ), validate_send_first_at, ) @FILTER_REGISTRY.register( "exponential_moving_average", ExponentialMovingAverageFilter, EXPONENTIAL_AVERAGE_SCHEMA, ) async def exponential_moving_average_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_ALPHA], config[CONF_SEND_EVERY], config[CONF_SEND_FIRST_AT], ) @FILTER_REGISTRY.register( "throttle_average", ThrottleAverageFilter, cv.positive_time_period_milliseconds ) async def throttle_average_filter_to_code(config, filter_id): var = cg.new_Pvariable(filter_id, config) await cg.register_component(var, {}) return var @FILTER_REGISTRY.register("lambda", LambdaFilter, cv.returning_lambda) async def lambda_filter_to_code(config, filter_id): lambda_ = await cg.process_lambda( config, [(float, "x")], return_type=cg.optional.template(float) ) return cg.new_Pvariable(filter_id, lambda_) DELTA_SCHEMA = cv.Schema( { cv.Required(CONF_VALUE): cv.positive_float, cv.Optional(CONF_TYPE, default="absolute"): cv.one_of( "absolute", "percentage", lower=True ), } ) def validate_delta(config): try: value = cv.positive_float(config) return DELTA_SCHEMA({CONF_VALUE: value, CONF_TYPE: "absolute"}) except cv.Invalid: pass try: value = cv.percentage(config) return DELTA_SCHEMA({CONF_VALUE: value, CONF_TYPE: "percentage"}) except cv.Invalid: pass raise cv.Invalid("Delta filter requires a positive number or percentage value.") @FILTER_REGISTRY.register("delta", DeltaFilter, cv.Any(DELTA_SCHEMA, validate_delta)) async def delta_filter_to_code(config, filter_id): percentage = config[CONF_TYPE] == "percentage" return cg.new_Pvariable( filter_id, config[CONF_VALUE], percentage, ) @FILTER_REGISTRY.register("or", OrFilter, validate_filters) async def or_filter_to_code(config, filter_id): filters = await build_filters(config) return cg.new_Pvariable(filter_id, filters) @FILTER_REGISTRY.register( "throttle", ThrottleFilter, cv.positive_time_period_milliseconds ) async def throttle_filter_to_code(config, filter_id): return cg.new_Pvariable(filter_id, config) @FILTER_REGISTRY.register( "heartbeat", HeartbeatFilter, cv.positive_time_period_milliseconds ) async def heartbeat_filter_to_code(config, filter_id): var = cg.new_Pvariable(filter_id, config) await cg.register_component(var, {}) return var TIMEOUT_SCHEMA = cv.maybe_simple_value( { cv.Required(CONF_TIMEOUT): cv.positive_time_period_milliseconds, cv.Optional(CONF_VALUE, default="nan"): cv.templatable(cv.float_), }, key=CONF_TIMEOUT, ) @FILTER_REGISTRY.register("timeout", TimeoutFilter, TIMEOUT_SCHEMA) async def timeout_filter_to_code(config, filter_id): template_ = await cg.templatable(config[CONF_VALUE], [], float) var = cg.new_Pvariable(filter_id, config[CONF_TIMEOUT], template_) await cg.register_component(var, {}) return var @FILTER_REGISTRY.register( "debounce", DebounceFilter, cv.positive_time_period_milliseconds ) async def debounce_filter_to_code(config, filter_id): var = cg.new_Pvariable(filter_id, config) await cg.register_component(var, {}) return var CONF_DATAPOINTS = "datapoints" def validate_calibrate_linear(config): datapoints = config[CONF_DATAPOINTS] if config[CONF_METHOD] == "exact": for i in range(len(datapoints) - 1): if datapoints[i][CONF_FROM] > datapoints[i + 1][CONF_FROM]: raise cv.Invalid( "The 'from' values of the calibrate_linear filter must be sorted in ascending order." ) for i in range(len(datapoints) - 1): if datapoints[i][CONF_FROM] == datapoints[i + 1][CONF_FROM]: raise cv.Invalid( "The 'from' values of the calibrate_linear filter must not contain duplicates." ) elif config[CONF_METHOD] == "least_squares": if all(conf[CONF_FROM] == datapoints[0][CONF_FROM] for conf in datapoints): raise cv.Invalid( "The 'from' values of the calibrate_linear filter cannot all point " "to the same value! Please add more values to the filter." ) return config @FILTER_REGISTRY.register( "calibrate_linear", CalibrateLinearFilter, cv.maybe_simple_value( { cv.Required(CONF_DATAPOINTS): cv.All( cv.ensure_list(validate_datapoint), cv.Length(min=2) ), cv.Optional(CONF_METHOD, default="least_squares"): cv.one_of( "least_squares", "exact", lower=True ), }, validate_calibrate_linear, key=CONF_DATAPOINTS, ), ) async def calibrate_linear_filter_to_code(config, filter_id): x = [conf[CONF_FROM] for conf in config[CONF_DATAPOINTS]] y = [conf[CONF_TO] for conf in config[CONF_DATAPOINTS]] linear_functions = [] if config[CONF_METHOD] == "least_squares": k, b = fit_linear(x, y) linear_functions = [[k, b, float("NaN")]] elif config[CONF_METHOD] == "exact": linear_functions = map_linear(x, y) return cg.new_Pvariable(filter_id, linear_functions) CONF_DEGREE = "degree" def validate_calibrate_polynomial(config): if config[CONF_DEGREE] >= len(config[CONF_DATAPOINTS]): raise cv.Invalid( f"Degree is too high! Maximum possible degree with given datapoints is {len(config[CONF_DATAPOINTS]) - 1}", [CONF_DEGREE], ) return config @FILTER_REGISTRY.register( "calibrate_polynomial", CalibratePolynomialFilter, cv.All( cv.Schema( { cv.Required(CONF_DATAPOINTS): cv.All( cv.ensure_list(validate_datapoint), cv.Length(min=1) ), cv.Required(CONF_DEGREE): cv.positive_int, } ), validate_calibrate_polynomial, ), ) async def calibrate_polynomial_filter_to_code(config, filter_id): x = [conf[CONF_FROM] for conf in config[CONF_DATAPOINTS]] y = [conf[CONF_TO] for conf in config[CONF_DATAPOINTS]] degree = config[CONF_DEGREE] a = [[1] + [x_ ** (i + 1) for i in range(degree)] for x_ in x] # Column vector b = [[v] for v in y] res = [v[0] for v in _lstsq(a, b)] return cg.new_Pvariable(filter_id, res) def validate_clamp(config): if not math.isfinite(config[CONF_MIN_VALUE]) and not math.isfinite( config[CONF_MAX_VALUE] ): raise cv.Invalid("Either 'min_value' or 'max_value' must be set to a number.") if config[CONF_MIN_VALUE] > config[CONF_MAX_VALUE]: raise cv.Invalid("The 'min_value' must not be larger than the 'max_value'.") return config CLAMP_SCHEMA = cv.All( cv.Schema( { cv.Optional(CONF_MIN_VALUE, default="NaN"): cv.float_, cv.Optional(CONF_MAX_VALUE, default="NaN"): cv.float_, cv.Optional(CONF_IGNORE_OUT_OF_RANGE, default=False): cv.boolean, } ), validate_clamp, ) @FILTER_REGISTRY.register("clamp", ClampFilter, CLAMP_SCHEMA) async def clamp_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_MIN_VALUE], config[CONF_MAX_VALUE], config[CONF_IGNORE_OUT_OF_RANGE], ) @FILTER_REGISTRY.register( "round", RoundFilter, cv.maybe_simple_value( { cv.Required(CONF_ACCURACY_DECIMALS): cv.uint8_t, }, key=CONF_ACCURACY_DECIMALS, ), ) async def round_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_ACCURACY_DECIMALS], ) @FILTER_REGISTRY.register( "round_to_multiple_of", RoundMultipleFilter, cv.maybe_simple_value( { cv.Required(CONF_MULTIPLE): cv.positive_not_null_float, }, key=CONF_MULTIPLE, ), ) async def round_multiple_filter_to_code(config, filter_id): return cg.new_Pvariable( filter_id, config[CONF_MULTIPLE], ) async def build_filters(config): return await cg.build_registry_list(FILTER_REGISTRY, config) async def setup_sensor_core_(var, config): await setup_entity(var, config) if (device_class := config.get(CONF_DEVICE_CLASS)) is not None: cg.add(var.set_device_class(device_class)) if (state_class := config.get(CONF_STATE_CLASS)) is not None: cg.add(var.set_state_class(state_class)) if (unit_of_measurement := config.get(CONF_UNIT_OF_MEASUREMENT)) is not None: cg.add(var.set_unit_of_measurement(unit_of_measurement)) if (accuracy_decimals := config.get(CONF_ACCURACY_DECIMALS)) is not None: cg.add(var.set_accuracy_decimals(accuracy_decimals)) cg.add(var.set_force_update(config[CONF_FORCE_UPDATE])) if config.get(CONF_FILTERS): # must exist and not be empty filters = await build_filters(config[CONF_FILTERS]) cg.add(var.set_filters(filters)) for conf in config.get(CONF_ON_VALUE, []): trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var) await automation.build_automation(trigger, [(float, "x")], conf) for conf in config.get(CONF_ON_RAW_VALUE, []): trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var) await automation.build_automation(trigger, [(float, "x")], conf) for conf in config.get(CONF_ON_VALUE_RANGE, []): trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var) await cg.register_component(trigger, conf) if (above := conf.get(CONF_ABOVE)) is not None: template_ = await cg.templatable(above, [(float, "x")], float) cg.add(trigger.set_min(template_)) if (below := conf.get(CONF_BELOW)) is not None: template_ = await cg.templatable(below, [(float, "x")], float) cg.add(trigger.set_max(template_)) await automation.build_automation(trigger, [(float, "x")], conf) if (mqtt_id := config.get(CONF_MQTT_ID)) is not None: mqtt_ = cg.new_Pvariable(mqtt_id, var) await mqtt.register_mqtt_component(mqtt_, config) if ( expire_after := config.get(CONF_EXPIRE_AFTER, cv.UNDEFINED) ) is not cv.UNDEFINED: if expire_after is None: cg.add(mqtt_.disable_expire_after()) else: cg.add(mqtt_.set_expire_after(expire_after)) if web_server_config := config.get(CONF_WEB_SERVER): await web_server.add_entity_config(var, web_server_config) async def register_sensor(var, config): if not CORE.has_id(config[CONF_ID]): var = cg.Pvariable(config[CONF_ID], var) cg.add(cg.App.register_sensor(var)) CORE.register_platform_component("sensor", var) await setup_sensor_core_(var, config) async def new_sensor(config, *args): var = cg.new_Pvariable(config[CONF_ID], *args) await register_sensor(var, config) return var SENSOR_IN_RANGE_CONDITION_SCHEMA = cv.All( { cv.Required(CONF_ID): cv.use_id(Sensor), cv.Optional(CONF_ABOVE): cv.float_, cv.Optional(CONF_BELOW): cv.float_, }, cv.has_at_least_one_key(CONF_ABOVE, CONF_BELOW), ) @automation.register_condition( "sensor.in_range", SensorInRangeCondition, SENSOR_IN_RANGE_CONDITION_SCHEMA ) async def sensor_in_range_to_code(config, condition_id, template_arg, args): paren = await cg.get_variable(config[CONF_ID]) var = cg.new_Pvariable(condition_id, template_arg, paren) if (above := config.get(CONF_ABOVE)) is not None: cg.add(var.set_min(above)) if (below := config.get(CONF_BELOW)) is not None: cg.add(var.set_max(below)) return var def validate_ntc_calibration_parameter(value): if isinstance(value, dict): return cv.Schema( { cv.Required(CONF_TEMPERATURE): cv.temperature, cv.Required(CONF_VALUE): cv.resistance, } )(value) value = cv.string(value) parts = value.split("->") if len(parts) != 2: raise cv.Invalid("Calibration parameter must be of form 3000 -> 23°C") resistance = cv.resistance(parts[0].strip()) temperature = cv.temperature(parts[1].strip()) return validate_ntc_calibration_parameter( { CONF_TEMPERATURE: temperature, CONF_VALUE: resistance, } ) CONF_A = "a" CONF_B = "b" CONF_C = "c" ZERO_POINT = 273.15 def ntc_calc_steinhart_hart(value): r1 = value[0][CONF_VALUE] r2 = value[1][CONF_VALUE] r3 = value[2][CONF_VALUE] t1 = value[0][CONF_TEMPERATURE] + ZERO_POINT t2 = value[1][CONF_TEMPERATURE] + ZERO_POINT t3 = value[2][CONF_TEMPERATURE] + ZERO_POINT l1 = math.log(r1) l2 = math.log(r2) l3 = math.log(r3) y1 = 1 / t1 y2 = 1 / t2 y3 = 1 / t3 g2 = (y2 - y1) / (l2 - l1) g3 = (y3 - y1) / (l3 - l1) c = (g3 - g2) / (l3 - l2) * 1 / (l1 + l2 + l3) b = g2 - c * (l1 * l1 + l1 * l2 + l2 * l2) a = y1 - (b + l1 * l1 * c) * l1 return a, b, c def ntc_get_abc(value): a = value[CONF_A] b = value[CONF_B] c = value[CONF_C] return a, b, c def ntc_process_calibration(value): if isinstance(value, dict): value = cv.Schema( { cv.Required(CONF_A): cv.float_, cv.Required(CONF_B): cv.float_, cv.Required(CONF_C): cv.float_, } )(value) a, b, c = ntc_get_abc(value) elif isinstance(value, list): if len(value) != 3: raise cv.Invalid( "Steinhart–Hart Calibration must consist of exactly three values" ) value = cv.Schema([validate_ntc_calibration_parameter])(value) a, b, c = ntc_calc_steinhart_hart(value) else: raise cv.Invalid( f"Calibration parameter accepts either a list for steinhart-hart calibration, or mapping for b-constant calibration, not {type(value)}" ) _LOGGER.info("Coefficient: a:%s, b:%s, c:%s", a, b, c) return { CONF_A: a, CONF_B: b, CONF_C: c, } @FILTER_REGISTRY.register( "to_ntc_resistance", ToNTCResistanceFilter, cv.All( cv.Schema( { cv.Required(CONF_CALIBRATION): ntc_process_calibration, } ), ), ) async def calibrate_ntc_resistance_filter_to_code(config, filter_id): calib = config[CONF_CALIBRATION] return cg.new_Pvariable( filter_id, calib[CONF_A], calib[CONF_B], calib[CONF_C], ) @FILTER_REGISTRY.register( "to_ntc_temperature", ToNTCTemperatureFilter, cv.All( cv.Schema( { cv.Required(CONF_CALIBRATION): ntc_process_calibration, } ), ), ) async def calibrate_ntc_temperature_filter_to_code(config, filter_id): calib = config[CONF_CALIBRATION] return cg.new_Pvariable( filter_id, calib[CONF_A], calib[CONF_B], calib[CONF_C], ) def _mean(xs): return sum(xs) / len(xs) def _std(x): return math.sqrt(sum((x_ - _mean(x)) ** 2 for x_ in x) / (len(x) - 1)) def _correlation_coeff(x, y): m_x, m_y = _mean(x), _mean(y) s_xy = sum((x_ - m_x) * (y_ - m_y) for x_, y_ in zip(x, y)) s_sq_x = sum((x_ - m_x) ** 2 for x_ in x) s_sq_y = sum((y_ - m_y) ** 2 for y_ in y) return s_xy / math.sqrt(s_sq_x * s_sq_y) def fit_linear(x, y): assert len(x) == len(y) m_x, m_y = _mean(x), _mean(y) r = _correlation_coeff(x, y) k = r * (_std(y) / _std(x)) b = m_y - k * m_x return k, b def map_linear(x, y): assert len(x) == len(y) f = [] for i in range(len(x) - 1): slope = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) bias = y[i] - (slope * x[i]) next_x = x[i + 1] if i == len(x) - 2: next_x = float("NaN") if f and f[-1][0] == slope and f[-1][1] == bias: f[-1][2] = next_x else: f.append([slope, bias, next_x]) return f def _mat_copy(m): return [list(row) for row in m] def _mat_transpose(m): return _mat_copy(zip(*m)) def _mat_identity(n): return [[int(i == j) for j in range(n)] for i in range(n)] def _mat_dot(a, b): b_t = _mat_transpose(b) return [[sum(x * y for x, y in zip(row_a, col_b)) for col_b in b_t] for row_a in a] def _mat_inverse(m): n = len(m) m = _mat_copy(m) id = _mat_identity(n) for diag in range(n): # If diag element is 0, swap rows if m[diag][diag] == 0: for i in range(diag + 1, n): if m[i][diag] != 0: break else: raise ValueError("Singular matrix, inverse cannot be calculated!") # Swap rows m[diag], m[i] = m[i], m[diag] id[diag], id[i] = id[i], id[diag] # Scale row to 1 in diagonal scaler = 1.0 / m[diag][diag] for j in range(n): m[diag][j] *= scaler id[diag][j] *= scaler # Subtract diag row for i in range(n): if i == diag: continue scaler = m[i][diag] for j in range(n): m[i][j] -= scaler * m[diag][j] id[i][j] -= scaler * id[diag][j] return id def _lstsq(a, b): # min_x ||b - ax||^2_2 => x = (a^T a)^{-1} a^T b a_t = _mat_transpose(a) x = _mat_inverse(_mat_dot(a_t, a)) return _mat_dot(_mat_dot(x, a_t), b) @coroutine_with_priority(100.0) async def to_code(config): cg.add_define("USE_SENSOR") cg.add_global(sensor_ns.using)