#include "mipi_spi.h" #include "esphome/core/log.h" namespace esphome { namespace mipi_spi { void MipiSpi::setup() { ESP_LOGCONFIG(TAG, "Running setup"); this->spi_setup(); if (this->dc_pin_ != nullptr) { this->dc_pin_->setup(); this->dc_pin_->digital_write(false); } for (auto *pin : this->enable_pins_) { pin->setup(); pin->digital_write(true); } if (this->reset_pin_ != nullptr) { this->reset_pin_->setup(); this->reset_pin_->digital_write(true); delay(5); this->reset_pin_->digital_write(false); delay(5); this->reset_pin_->digital_write(true); } this->bus_width_ = this->parent_->get_bus_width(); // need to know when the display is ready for SLPOUT command - will be 120ms after reset auto when = millis() + 120; delay(10); size_t index = 0; auto &vec = this->init_sequence_; while (index != vec.size()) { if (vec.size() - index < 2) { ESP_LOGE(TAG, "Malformed init sequence"); this->mark_failed(); return; } uint8_t cmd = vec[index++]; uint8_t x = vec[index++]; if (x == DELAY_FLAG) { ESP_LOGD(TAG, "Delay %dms", cmd); delay(cmd); } else { uint8_t num_args = x & 0x7F; if (vec.size() - index < num_args) { ESP_LOGE(TAG, "Malformed init sequence"); this->mark_failed(); return; } auto arg_byte = vec[index]; switch (cmd) { case SLEEP_OUT: { // are we ready, boots? int duration = when - millis(); if (duration > 0) { ESP_LOGD(TAG, "Sleep %dms", duration); delay(duration); } } break; case INVERT_ON: this->invert_colors_ = true; break; case MADCTL_CMD: this->madctl_ = arg_byte; break; case PIXFMT: this->pixel_mode_ = arg_byte & 0x11 ? PIXEL_MODE_16 : PIXEL_MODE_18; break; case BRIGHTNESS: this->brightness_ = arg_byte; break; default: break; } const auto *ptr = vec.data() + index; ESP_LOGD(TAG, "Command %02X, length %d, byte %02X", cmd, num_args, arg_byte); this->write_command_(cmd, ptr, num_args); index += num_args; if (cmd == SLEEP_OUT) delay(10); } } this->setup_complete_ = true; if (this->draw_from_origin_) check_buffer_(); ESP_LOGCONFIG(TAG, "MIPI SPI setup complete"); } void MipiSpi::update() { if (!this->setup_complete_ || this->is_failed()) { return; } this->do_update_(); if (this->buffer_ == nullptr || this->x_low_ > this->x_high_ || this->y_low_ > this->y_high_) return; ESP_LOGV(TAG, "x_low %d, y_low %d, x_high %d, y_high %d", this->x_low_, this->y_low_, this->x_high_, this->y_high_); // Some chips require that the drawing window be aligned on certain boundaries auto dr = this->draw_rounding_; this->x_low_ = this->x_low_ / dr * dr; this->y_low_ = this->y_low_ / dr * dr; this->x_high_ = (this->x_high_ + dr) / dr * dr - 1; this->y_high_ = (this->y_high_ + dr) / dr * dr - 1; if (this->draw_from_origin_) { this->x_low_ = 0; this->y_low_ = 0; this->x_high_ = this->width_ - 1; } int w = this->x_high_ - this->x_low_ + 1; int h = this->y_high_ - this->y_low_ + 1; this->write_to_display_(this->x_low_, this->y_low_, w, h, this->buffer_, this->x_low_, this->y_low_, this->width_ - w - this->x_low_); // invalidate watermarks this->x_low_ = this->width_; this->y_low_ = this->height_; this->x_high_ = 0; this->y_high_ = 0; } void MipiSpi::fill(Color color) { if (!this->check_buffer_()) return; this->x_low_ = 0; this->y_low_ = 0; this->x_high_ = this->get_width_internal() - 1; this->y_high_ = this->get_height_internal() - 1; switch (this->color_depth_) { case display::COLOR_BITNESS_332: { auto new_color = display::ColorUtil::color_to_332(color, display::ColorOrder::COLOR_ORDER_RGB); memset(this->buffer_, (uint8_t) new_color, this->buffer_bytes_); break; } default: { auto new_color = display::ColorUtil::color_to_565(color); if (((uint8_t) (new_color >> 8)) == ((uint8_t) new_color)) { // Upper and lower is equal can use quicker memset operation. Takes ~20ms. memset(this->buffer_, (uint8_t) new_color, this->buffer_bytes_); } else { auto *ptr_16 = reinterpret_cast(this->buffer_); auto len = this->buffer_bytes_ / 2; while (len--) { *ptr_16++ = new_color; } } } } } void MipiSpi::draw_absolute_pixel_internal(int x, int y, Color color) { if (x >= this->get_width_internal() || x < 0 || y >= this->get_height_internal() || y < 0) { return; } if (!this->check_buffer_()) return; size_t pos = (y * this->width_) + x; switch (this->color_depth_) { case display::COLOR_BITNESS_332: { uint8_t new_color = display::ColorUtil::color_to_332(color); if (this->buffer_[pos] == new_color) return; this->buffer_[pos] = new_color; break; } case display::COLOR_BITNESS_565: { auto *ptr_16 = reinterpret_cast(this->buffer_); uint8_t hi_byte = static_cast(color.r & 0xF8) | (color.g >> 5); uint8_t lo_byte = static_cast((color.g & 0x1C) << 3) | (color.b >> 3); uint16_t new_color = hi_byte | (lo_byte << 8); // big endian if (ptr_16[pos] == new_color) return; ptr_16[pos] = new_color; break; } default: return; } // low and high watermark may speed up drawing from buffer if (x < this->x_low_) this->x_low_ = x; if (y < this->y_low_) this->y_low_ = y; if (x > this->x_high_) this->x_high_ = x; if (y > this->y_high_) this->y_high_ = y; } void MipiSpi::reset_params_() { if (!this->is_ready()) return; this->write_command_(this->invert_colors_ ? INVERT_ON : INVERT_OFF); if (this->brightness_.has_value()) this->write_command_(BRIGHTNESS, this->brightness_.value()); } void MipiSpi::write_init_sequence_() { size_t index = 0; auto &vec = this->init_sequence_; while (index != vec.size()) { if (vec.size() - index < 2) { ESP_LOGE(TAG, "Malformed init sequence"); this->mark_failed(); return; } uint8_t cmd = vec[index++]; uint8_t x = vec[index++]; if (x == DELAY_FLAG) { ESP_LOGV(TAG, "Delay %dms", cmd); delay(cmd); } else { uint8_t num_args = x & 0x7F; if (vec.size() - index < num_args) { ESP_LOGE(TAG, "Malformed init sequence"); this->mark_failed(); return; } const auto *ptr = vec.data() + index; this->write_command_(cmd, ptr, num_args); index += num_args; } } this->setup_complete_ = true; ESP_LOGCONFIG(TAG, "MIPI SPI setup complete"); } void MipiSpi::set_addr_window_(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2) { ESP_LOGVV(TAG, "Set addr %d/%d, %d/%d", x1, y1, x2, y2); uint8_t buf[4]; x1 += this->offset_width_; x2 += this->offset_width_; y1 += this->offset_height_; y2 += this->offset_height_; put16_be(buf, y1); put16_be(buf + 2, y2); this->write_command_(RASET, buf, sizeof buf); put16_be(buf, x1); put16_be(buf + 2, x2); this->write_command_(CASET, buf, sizeof buf); } void MipiSpi::draw_pixels_at(int x_start, int y_start, int w, int h, const uint8_t *ptr, display::ColorOrder order, display::ColorBitness bitness, bool big_endian, int x_offset, int y_offset, int x_pad) { if (!this->setup_complete_ || this->is_failed()) return; if (w <= 0 || h <= 0) return; if (bitness != this->color_depth_ || big_endian != (this->bit_order_ == spi::BIT_ORDER_MSB_FIRST)) { Display::draw_pixels_at(x_start, y_start, w, h, ptr, order, bitness, big_endian, x_offset, y_offset, x_pad); return; } if (this->draw_from_origin_) { auto stride = x_offset + w + x_pad; for (int y = 0; y != h; y++) { memcpy(this->buffer_ + ((y + y_start) * this->width_ + x_start) * 2, ptr + ((y + y_offset) * stride + x_offset) * 2, w * 2); } ptr = this->buffer_; w = this->width_; h += y_start; x_start = 0; y_start = 0; x_offset = 0; y_offset = 0; } this->write_to_display_(x_start, y_start, w, h, ptr, x_offset, y_offset, x_pad); } void MipiSpi::write_18_from_16_bit_(const uint16_t *ptr, size_t w, size_t h, size_t stride) { stride -= w; uint8_t transfer_buffer[6 * 256]; size_t idx = 0; // index into transfer_buffer while (h-- != 0) { for (auto x = w; x-- != 0;) { auto color_val = *ptr++; // deal with byte swapping transfer_buffer[idx++] = (color_val & 0xF8); // Blue transfer_buffer[idx++] = ((color_val & 0x7) << 5) | ((color_val & 0xE000) >> 11); // Green transfer_buffer[idx++] = (color_val >> 5) & 0xF8; // Red if (idx == sizeof(transfer_buffer)) { this->write_array(transfer_buffer, idx); idx = 0; } } ptr += stride; } if (idx != 0) this->write_array(transfer_buffer, idx); } void MipiSpi::write_18_from_8_bit_(const uint8_t *ptr, size_t w, size_t h, size_t stride) { stride -= w; uint8_t transfer_buffer[6 * 256]; size_t idx = 0; // index into transfer_buffer while (h-- != 0) { for (auto x = w; x-- != 0;) { auto color_val = *ptr++; transfer_buffer[idx++] = color_val & 0xE0; // Red transfer_buffer[idx++] = (color_val << 3) & 0xE0; // Green transfer_buffer[idx++] = color_val << 6; // Blue if (idx == sizeof(transfer_buffer)) { this->write_array(transfer_buffer, idx); idx = 0; } } ptr += stride; } if (idx != 0) this->write_array(transfer_buffer, idx); } void MipiSpi::write_16_from_8_bit_(const uint8_t *ptr, size_t w, size_t h, size_t stride) { stride -= w; uint8_t transfer_buffer[6 * 256]; size_t idx = 0; // index into transfer_buffer while (h-- != 0) { for (auto x = w; x-- != 0;) { auto color_val = *ptr++; transfer_buffer[idx++] = (color_val & 0xE0) | ((color_val & 0x1C) >> 2); transfer_buffer[idx++] = (color_val & 0x3) << 3; if (idx == sizeof(transfer_buffer)) { this->write_array(transfer_buffer, idx); idx = 0; } } ptr += stride; } if (idx != 0) this->write_array(transfer_buffer, idx); } void MipiSpi::write_to_display_(int x_start, int y_start, int w, int h, const uint8_t *ptr, int x_offset, int y_offset, int x_pad) { this->set_addr_window_(x_start, y_start, x_start + w - 1, y_start + h - 1); auto stride = x_offset + w + x_pad; const auto *offset_ptr = ptr; if (this->color_depth_ == display::COLOR_BITNESS_332) { offset_ptr += y_offset * stride + x_offset; } else { stride *= 2; offset_ptr += y_offset * stride + x_offset * 2; } switch (this->bus_width_) { case 4: this->enable(); if (x_offset == 0 && x_pad == 0 && y_offset == 0) { // we could deal here with a non-zero y_offset, but if x_offset is zero, y_offset probably will be so don't // bother this->write_cmd_addr_data(8, 0x32, 24, WDATA << 8, ptr, w * h * 2, 4); } else { this->write_cmd_addr_data(8, 0x32, 24, WDATA << 8, nullptr, 0, 4); for (int y = 0; y != h; y++) { this->write_cmd_addr_data(0, 0, 0, 0, offset_ptr, w * 2, 4); offset_ptr += stride; } } break; case 8: this->write_command_(WDATA); this->enable(); if (x_offset == 0 && x_pad == 0 && y_offset == 0) { this->write_cmd_addr_data(0, 0, 0, 0, ptr, w * h * 2, 8); } else { for (int y = 0; y != h; y++) { this->write_cmd_addr_data(0, 0, 0, 0, offset_ptr, w * 2, 8); offset_ptr += stride; } } break; default: this->write_command_(WDATA); this->enable(); if (this->color_depth_ == display::COLOR_BITNESS_565) { // Source buffer is 16-bit RGB565 if (this->pixel_mode_ == PIXEL_MODE_18) { // Convert RGB565 to RGB666 this->write_18_from_16_bit_(reinterpret_cast(offset_ptr), w, h, stride / 2); } else { // Direct RGB565 output if (x_offset == 0 && x_pad == 0 && y_offset == 0) { this->write_array(ptr, w * h * 2); } else { for (int y = 0; y != h; y++) { this->write_array(offset_ptr, w * 2); offset_ptr += stride; } } } } else { // Source buffer is 8-bit RGB332 if (this->pixel_mode_ == PIXEL_MODE_18) { // Convert RGB332 to RGB666 this->write_18_from_8_bit_(offset_ptr, w, h, stride); } else { this->write_16_from_8_bit_(offset_ptr, w, h, stride); } break; } } this->disable(); } void MipiSpi::write_command_(uint8_t cmd, const uint8_t *bytes, size_t len) { ESP_LOGV(TAG, "Command %02X, length %d, bytes %s", cmd, len, format_hex_pretty(bytes, len).c_str()); if (this->bus_width_ == 4) { this->enable(); this->write_cmd_addr_data(8, 0x02, 24, cmd << 8, bytes, len); this->disable(); } else if (this->bus_width_ == 8) { this->dc_pin_->digital_write(false); this->enable(); this->write_cmd_addr_data(0, 0, 0, 0, &cmd, 1, 8); this->disable(); this->dc_pin_->digital_write(true); if (len != 0) { this->enable(); this->write_cmd_addr_data(0, 0, 0, 0, bytes, len, 8); this->disable(); } } else { this->dc_pin_->digital_write(false); this->enable(); this->write_byte(cmd); this->disable(); this->dc_pin_->digital_write(true); if (len != 0) { if (this->spi_16_) { for (size_t i = 0; i != len; i++) { this->enable(); this->write_byte(0); this->write_byte(bytes[i]); this->disable(); } } else { this->enable(); this->write_array(bytes, len); this->disable(); } } } } void MipiSpi::dump_config() { ESP_LOGCONFIG(TAG, "MIPI_SPI Display\n" " Model: %s\n" " Width: %u\n" " Height: %u", this->model_, this->width_, this->height_); if (this->offset_width_ != 0) ESP_LOGCONFIG(TAG, " Offset width: %u", this->offset_width_); if (this->offset_height_ != 0) ESP_LOGCONFIG(TAG, " Offset height: %u", this->offset_height_); ESP_LOGCONFIG(TAG, " Swap X/Y: %s\n" " Mirror X: %s\n" " Mirror Y: %s\n" " Color depth: %d bits\n" " Invert colors: %s\n" " Color order: %s\n" " Pixel mode: %s", YESNO(this->madctl_ & MADCTL_MV), YESNO(this->madctl_ & (MADCTL_MX | MADCTL_XFLIP)), YESNO(this->madctl_ & (MADCTL_MY | MADCTL_YFLIP)), this->color_depth_ == display::COLOR_BITNESS_565 ? 16 : 8, YESNO(this->invert_colors_), this->madctl_ & MADCTL_BGR ? "BGR" : "RGB", this->pixel_mode_ == PIXEL_MODE_18 ? "18bit" : "16bit"); if (this->brightness_.has_value()) ESP_LOGCONFIG(TAG, " Brightness: %u", this->brightness_.value()); if (this->spi_16_) ESP_LOGCONFIG(TAG, " SPI 16bit: YES"); ESP_LOGCONFIG(TAG, " Draw rounding: %u", this->draw_rounding_); if (this->draw_from_origin_) ESP_LOGCONFIG(TAG, " Draw from origin: YES"); LOG_PIN(" CS Pin: ", this->cs_); LOG_PIN(" Reset Pin: ", this->reset_pin_); LOG_PIN(" DC Pin: ", this->dc_pin_); ESP_LOGCONFIG(TAG, " SPI Mode: %d\n" " SPI Data rate: %dMHz\n" " SPI Bus width: %d", this->mode_, static_cast(this->data_rate_ / 1000000), this->bus_width_); } } // namespace mipi_spi } // namespace esphome