#include "bmi160.h" #include "esphome/core/hal.h" #include "esphome/core/log.h" namespace esphome { namespace bmi160 { static const char *const TAG = "bmi160"; const uint8_t BMI160_REGISTER_CHIPID = 0x00; const uint8_t BMI160_REGISTER_CMD = 0x7E; enum class Cmd : uint8_t { START_FOC = 0x03, ACCL_SET_PMU_MODE = 0b00010000, // last 2 bits are mode GYRO_SET_PMU_MODE = 0b00010100, // last 2 bits are mode MAG_SET_PMU_MODE = 0b00011000, // last 2 bits are mode PROG_NVM = 0xA0, FIFO_FLUSH = 0xB0, INT_RESET = 0xB1, SOFT_RESET = 0xB6, STEP_CNT_CLR = 0xB2, }; enum class GyroPmuMode : uint8_t { SUSPEND = 0b00, NORMAL = 0b01, LOW_POWER = 0b10, }; enum class AcclPmuMode : uint8_t { SUSPEND = 0b00, NORMAL = 0b01, FAST_STARTUP = 0b11, }; enum class MagPmuMode : uint8_t { SUSPEND = 0b00, NORMAL = 0b01, LOW_POWER = 0b10, }; const uint8_t BMI160_REGISTER_ACCEL_CONFIG = 0x40; enum class AcclFilterMode : uint8_t { POWER_SAVING = 0b00000000, PERF = 0b10000000, }; enum class AcclBandwidth : uint8_t { OSR4_AVG1 = 0b00000000, OSR2_AVG2 = 0b00010000, NORMAL_AVG4 = 0b00100000, RES_AVG8 = 0b00110000, RES_AVG16 = 0b01000000, RES_AVG32 = 0b01010000, RES_AVG64 = 0b01100000, RES_AVG128 = 0b01110000, }; enum class AccelOutputDataRate : uint8_t { HZ_25_32 = 0b0001, // 25/32 Hz HZ_25_16 = 0b0010, // 25/16 Hz HZ_25_8 = 0b0011, // 25/8 Hz HZ_25_4 = 0b0100, // 25/4 Hz HZ_25_2 = 0b0101, // 25/2 Hz HZ_25 = 0b0110, // 25 Hz HZ_50 = 0b0111, // 50 Hz HZ_100 = 0b1000, // 100 Hz HZ_200 = 0b1001, // 200 Hz HZ_400 = 0b1010, // 400 Hz HZ_800 = 0b1011, // 800 Hz HZ_1600 = 0b1100, // 1600 Hz }; const uint8_t BMI160_REGISTER_ACCEL_RANGE = 0x41; enum class AccelRange : uint8_t { RANGE_2G = 0b0011, RANGE_4G = 0b0101, RANGE_8G = 0b1000, RANGE_16G = 0b1100, }; const uint8_t BMI160_REGISTER_GYRO_CONFIG = 0x42; enum class GyroBandwidth : uint8_t { OSR4 = 0x00, OSR2 = 0x10, NORMAL = 0x20, }; enum class GyroOuputDataRate : uint8_t { HZ_25 = 0x06, HZ_50 = 0x07, HZ_100 = 0x08, HZ_200 = 0x09, HZ_400 = 0x0A, HZ_800 = 0x0B, HZ_1600 = 0x0C, HZ_3200 = 0x0D, }; const uint8_t BMI160_REGISTER_GYRO_RANGE = 0x43; enum class GyroRange : uint8_t { RANGE_2000_DPS = 0x0, // ±2000 °/s RANGE_1000_DPS = 0x1, RANGE_500_DPS = 0x2, RANGE_250_DPS = 0x3, RANGE_125_DPS = 0x4, }; const uint8_t BMI160_REGISTER_DATA_GYRO_X_LSB = 0x0C; const uint8_t BMI160_REGISTER_DATA_GYRO_X_MSB = 0x0D; const uint8_t BMI160_REGISTER_DATA_GYRO_Y_LSB = 0x0E; const uint8_t BMI160_REGISTER_DATA_GYRO_Y_MSB = 0x0F; const uint8_t BMI160_REGISTER_DATA_GYRO_Z_LSB = 0x10; const uint8_t BMI160_REGISTER_DATA_GYRO_Z_MSB = 0x11; const uint8_t BMI160_REGISTER_DATA_ACCEL_X_LSB = 0x12; const uint8_t BMI160_REGISTER_DATA_ACCEL_X_MSB = 0x13; const uint8_t BMI160_REGISTER_DATA_ACCEL_Y_LSB = 0x14; const uint8_t BMI160_REGISTER_DATA_ACCEL_Y_MSB = 0x15; const uint8_t BMI160_REGISTER_DATA_ACCEL_Z_LSB = 0x16; const uint8_t BMI160_REGISTER_DATA_ACCEL_Z_MSB = 0x17; const uint8_t BMI160_REGISTER_DATA_TEMP_LSB = 0x20; const uint8_t BMI160_REGISTER_DATA_TEMP_MSB = 0x21; const float GRAVITY_EARTH = 9.80665f; void BMI160Component::internal_setup_(int stage) { switch (stage) { case 0: ESP_LOGCONFIG(TAG, "Running setup"); uint8_t chipid; if (!this->read_byte(BMI160_REGISTER_CHIPID, &chipid) || (chipid != 0b11010001)) { this->mark_failed(); return; } ESP_LOGV(TAG, " Bringing accelerometer out of sleep"); if (!this->write_byte(BMI160_REGISTER_CMD, (uint8_t) Cmd::ACCL_SET_PMU_MODE | (uint8_t) AcclPmuMode::NORMAL)) { this->mark_failed(); return; } ESP_LOGV(TAG, " Waiting for accelerometer to wake up"); // need to wait (max delay in datasheet) because we can't send commands while another is in progress // min 5ms, 10ms this->set_timeout(10, [this]() { this->internal_setup_(1); }); break; case 1: ESP_LOGV(TAG, " Bringing gyroscope out of sleep"); if (!this->write_byte(BMI160_REGISTER_CMD, (uint8_t) Cmd::GYRO_SET_PMU_MODE | (uint8_t) GyroPmuMode::NORMAL)) { this->mark_failed(); return; } ESP_LOGV(TAG, " Waiting for gyroscope to wake up"); // wait between 51 & 81ms, doing 100 to be safe this->set_timeout(10, [this]() { this->internal_setup_(2); }); break; case 2: ESP_LOGV(TAG, " Setting up Gyro Config"); uint8_t gyro_config = (uint8_t) GyroBandwidth::OSR4 | (uint8_t) GyroOuputDataRate::HZ_25; ESP_LOGV(TAG, " Output gyro_config: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(gyro_config)); if (!this->write_byte(BMI160_REGISTER_GYRO_CONFIG, gyro_config)) { this->mark_failed(); return; } ESP_LOGV(TAG, " Setting up Gyro Range"); uint8_t gyro_range = (uint8_t) GyroRange::RANGE_2000_DPS; ESP_LOGV(TAG, " Output gyro_range: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(gyro_range)); if (!this->write_byte(BMI160_REGISTER_GYRO_RANGE, gyro_range)) { this->mark_failed(); return; } ESP_LOGV(TAG, " Setting up Accel Config"); uint8_t accel_config = (uint8_t) AcclFilterMode::PERF | (uint8_t) AcclBandwidth::RES_AVG16 | (uint8_t) AccelOutputDataRate::HZ_25; ESP_LOGV(TAG, " Output accel_config: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(accel_config)); if (!this->write_byte(BMI160_REGISTER_ACCEL_CONFIG, accel_config)) { this->mark_failed(); return; } ESP_LOGV(TAG, " Setting up Accel Range"); uint8_t accel_range = (uint8_t) AccelRange::RANGE_16G; ESP_LOGV(TAG, " Output accel_range: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(accel_range)); if (!this->write_byte(BMI160_REGISTER_ACCEL_RANGE, accel_range)) { this->mark_failed(); return; } this->setup_complete_ = true; } } void BMI160Component::setup() { this->internal_setup_(0); } void BMI160Component::dump_config() { ESP_LOGCONFIG(TAG, "BMI160:"); LOG_I2C_DEVICE(this); if (this->is_failed()) { ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL); } LOG_UPDATE_INTERVAL(this); LOG_SENSOR(" ", "Acceleration X", this->accel_x_sensor_); LOG_SENSOR(" ", "Acceleration Y", this->accel_y_sensor_); LOG_SENSOR(" ", "Acceleration Z", this->accel_z_sensor_); LOG_SENSOR(" ", "Gyro X", this->gyro_x_sensor_); LOG_SENSOR(" ", "Gyro Y", this->gyro_y_sensor_); LOG_SENSOR(" ", "Gyro Z", this->gyro_z_sensor_); LOG_SENSOR(" ", "Temperature", this->temperature_sensor_); } i2c::ErrorCode BMI160Component::read_le_int16_(uint8_t reg, int16_t *value, uint8_t len) { uint8_t raw_data[len * 2]; // read using read_register because we have little-endian data, and read_bytes_16 will swap it i2c::ErrorCode err = this->read_register(reg, raw_data, len * 2, true); if (err != i2c::ERROR_OK) { return err; } for (int i = 0; i < len; i++) { value[i] = (int16_t) ((uint16_t) raw_data[i * 2] | ((uint16_t) raw_data[i * 2 + 1] << 8)); } return err; } void BMI160Component::update() { if (!this->setup_complete_) { return; } ESP_LOGV(TAG, " Updating BMI160"); int16_t data[6]; if (this->read_le_int16_(BMI160_REGISTER_DATA_GYRO_X_LSB, data, 6) != i2c::ERROR_OK) { this->status_set_warning(); return; } float gyro_x = (float) data[0] / (float) INT16_MAX * 2000.f; float gyro_y = (float) data[1] / (float) INT16_MAX * 2000.f; float gyro_z = (float) data[2] / (float) INT16_MAX * 2000.f; float accel_x = (float) data[3] / (float) INT16_MAX * 16 * GRAVITY_EARTH; float accel_y = (float) data[4] / (float) INT16_MAX * 16 * GRAVITY_EARTH; float accel_z = (float) data[5] / (float) INT16_MAX * 16 * GRAVITY_EARTH; int16_t raw_temperature; if (this->read_le_int16_(BMI160_REGISTER_DATA_TEMP_LSB, &raw_temperature, 1) != i2c::ERROR_OK) { this->status_set_warning(); return; } float temperature = (float) raw_temperature / (float) INT16_MAX * 64.5f + 23.f; ESP_LOGD(TAG, "Got accel={x=%.3f m/s², y=%.3f m/s², z=%.3f m/s²}, " "gyro={x=%.3f °/s, y=%.3f °/s, z=%.3f °/s}, temp=%.3f°C", accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z, temperature); if (this->accel_x_sensor_ != nullptr) this->accel_x_sensor_->publish_state(accel_x); if (this->accel_y_sensor_ != nullptr) this->accel_y_sensor_->publish_state(accel_y); if (this->accel_z_sensor_ != nullptr) this->accel_z_sensor_->publish_state(accel_z); if (this->temperature_sensor_ != nullptr) this->temperature_sensor_->publish_state(temperature); if (this->gyro_x_sensor_ != nullptr) this->gyro_x_sensor_->publish_state(gyro_x); if (this->gyro_y_sensor_ != nullptr) this->gyro_y_sensor_->publish_state(gyro_y); if (this->gyro_z_sensor_ != nullptr) this->gyro_z_sensor_->publish_state(gyro_z); this->status_clear_warning(); } float BMI160Component::get_setup_priority() const { return setup_priority::DATA; } } // namespace bmi160 } // namespace esphome